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Abstract 
 
The choice of monetary policy is the most important concern of central banks, but this 
choice is always confronted with two relevant aspects of economic policy: parameter 
instability and model uncertainty. This paper deals with both types of uncertainty and 
shows that recursive thick modeling is a better approximation to the recent historical 
nominal interest rates in Mexico than both recursive thin modeling and models with a low 
penalty on interest rate variability. We complement previous work by evaluating the 
usefulness of  both recursive thick modeling and recursive thin modeling in terms of 
direction-of-change forecastability. The results show a policy maker who cares about 
inflation and output stabilization the same for downward movements in nominal interest 
rates. Furthermore, our results suggest a policy maker with a higher preference for 
inflation stabilization for upward movements in nominal interest rates. 
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INTRODUCTION 

 
Both academics and policy makers have long been interested in the role played by 

uncertainty on the optimal monetary policy rule. Typically, there are three sources of 

uncertainty in economic models:1 (a) uncertainty about the structure of the model, (b) 

uncertainty about the estimates of the model parameters (supposing that we know the 

structure of the model), and (c) unexplained random variation in observed variables even 

when we know the structure of the model and the values of the model parameters. Our 

investigation indicates that the uncertainty about the structure of the model plays a 

significant role in understanding nominal interest rates in Mexico.2 We find a better 

approximation to the recent historical nominal interest rates in Mexico when one succeeds 

to assess and propagate model uncertainty than when one fails to disseminate model 

uncertainty. Additional tests establish a policy maker who cares about inflation and output 

stabilization the same for downward movements in nominal interest rates, but suggest a 

policy maker with a higher preference for inflation stabilization for upward movements in 

nominal interest rates.     

 

 This paper is closely related to the literature that deals with unstable parameters and 

uncertainty issues in econometric models. An approach for dealing with parameter 

instability and non-linearity is proposed by Pesaran and Timmermann (1995) in the context 

of small models. They address those potential problems by using recursive modeling. 

Favero and Milani (2005) use recursive thick modeling for the choice of monetary policy in 

the US by complementing Pesaran and Timmermann´s (1995) work with the thick modeling 

approach proposed by Granger and Jeon (2004). They find that recursive thick modeling 

delivers optimal policy rates that track actual policy rates better than a constant parameter 

specification with no role for model uncertainty. Other types of uncertainty as defined by 

Jenkins and Longworth (2002) and related to additive shocks, duration of shocks and data 

are not addressed in this paper. Neither do we directly incorporate parameter uncertainty à 

la Brainard (1967) to determine its effect on optimal policy. Söderström (2002) studies the 

                                                 
1 For the literature on model uncertainty see, for instance, Hodges (1987) and Chatfield (1995). 
2 In what follows, we term the uncertainty about the structure of the model as “model uncertainty.”   
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effect of uncertainty in the inflation persistence parameter on optimal policy. The other 

approach to deal with model uncertainty is robust control as in Hansen and Sargent (2003) 

and Onatski and Stock (2002).   

 

In this paper, we analyze optimal monetary policy in Mexico in order to also assess 

the relevance of parameter instability and model uncertainty. Following Favero and Milani 

(2005), we implement recursive thick modeling. Like Favero and Milani (2005), we 

generate 2k models in every period by making all of the possible combinations from a set of  

k regressors. This allows us to consider the uncertainty in the number of lags with which 

the relevant variables enter into the output gap and core inflation specifications. We use a 

fixed-size rolling window for the estimations. The Schwarz’s Bayesian Information 

Criterion (BIC), adjusted R2 and Cross Validation are the three statistical criteria selection 

methods used to rank all of the generated output gap and core inflation models. We rely on 

the target controllability concept to eliminate useless models. For the models ranked 

according to the Cross Validation criterion, we use the random walk model as a benchmark 

model to eliminate more models.  We obtain arithmetic and weighted averages of all the 

optimal nominal rates corresponding to the surviving models. Finally, we use the Diebold 

and Mariano’s (1995) sign test statistic, bootstrap replications and direction-of-change 

forecastability to reveal the preference parameters of the policy maker when setting 

nominal rates.            

 

By implementing Diebold and Mariano’s (1995) sign test statistic and using re-

sampling techniques, we find out that a policy maker who takes into account model 

uncertainty does the best tracking of the historical nominal interest rates in Mexico during 

the period January 2001-June 2004. In other words, recursive thick modeling tracks actual 

nominal rates better than recursive thin modeling, consistent with Favero and Milani 

(2005).  

 

However, we complement previous work by evaluating the usefulness of both 

recursive thick modeling and recursive thin modeling in terms of direction-of-change 

forecastability. The results show how the behavior of the policy maker can help to explain 
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either upward or downward movements in actual nominal rates. For example, we find a 

policy maker who cares about inflation and output stabilization the same for downward 

movements in nominal interest rates. Furthermore, our results suggest a policy maker with 

a higher preference for inflation stabilization for upward movements in nominal interest 

rates. 

 

The remainder of this paper is organized as follows. In Section 1, the set up of a 

basic macroeconomic model is presented. In Section 2 the parameter instability and model 

rankings problems are revealed, the open economy model is presented and some definitions 

are given. Section 3 presents the optimal monetary policy framework, the six different 

policy maker’s preference parameters and the procedures that were used to reduce the 

number of models. In Section 4 the optimality results, with and without incorporating 

model uncertainty, are shown for every one of the six different policy maker’s preference 

parameters. Section 5 assesses the generalization performance of models and eliminates 

those not capable of outperforming the random walk model. Section 6 statistically 

compares the performance of a specific optimality result to the rest’s, it shows direction-of-

change forecastability outcomes and the effect of test-set class distributions on mean square 

errors. Finally, Section 7 concludes. 

 

1. BASIC MACROECONOMIC MODEL 

 

Our basic model is a modified version of the dynamic aggregate supply-aggregate demand 

framework used by Rudebusch and Svensson (1999). The original framework was modified 

to include open economy variables. The dynamic homogeneity property is imposed on the 

Phillips curve for core inflation, which is similar to the one used by Contreras and García 

(2002).3 The IS curve is similar to the one used by Ball (1999). The equations used are: 

  
πεββπβπ ttt

c
t

c
t eudex +−++= −− inf)1( 12211                                                             (1) 

 

                                                 
3 As opposed to the Phillips curve used by those authors, ours does not have a forward-looking inflation 

component. The reasons for not having included forward-looking variables will be given in the next sections.  
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x
ttt

us
ttt rltcrxxx εγγγγγ +++++= −−− 14312110                                                          (2) 

 
 
Equation (1) is an open economy Phillips curve where core inflation  is affected by its 

own lag , the output gap second lag , and the sum of the contemporaneous nominal 

exchange rate percentage depreciation and the external inflation . We impose the 

dynamic homogeneity condition on Equation (1) to guarantee long run inflation neutrality 

on output.

c
tπ

c
t 1−π 2−tx

teude inf

4  

 

Equation (2) is an open economy IS equation where the output gap  is affected by 

its own lag , the lag of the US output gap , the lag of the ex-post real interest rate 

 and the contemporaneous value of the natural log of the real exchange rate .  

and  are the respective white noise shocks. We use monthly data for core inflation, 

output gap, the real exchange rate and the ex-post real interest rate. 

tx

1−tx us
tx 1−

1−tr tltcr πε t

x
tε

 

Under the restrictions given by Equations 1-2 along with other specifications for 

exogenous variables, the central bank minimizes an intertemporal loss function by 

optimally setting the nominal interest rate. Initially, it is assumed that this single model 

contains the correct representation of the economy and that the model parameters are 

constant over time. 

 

 

 

                                                 
4 Data was obtained from Banco de México. The output gaps are percentage deviations of the seasonal 

adjusted Index of General Economic Activity (IGAE) and the seasonal adjusted US Industrial Production 

Index from their respective output potential. The output potentials represent an average of a linear trend and a 

Hodrick-Prescott filter. The log of the real exchange rate is the natural logarithm of the US-Mexico real 

exchange rate index (1997 = 1.0). The monthly nominal interest rate was obtained from the 28-day Mexican 

government T-bill (CETES). 
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2. PARAMETER INSTABILITY 

 
Using monthly data for the Mexican economy over the period 1996:09-2004:06, the 

estimated equations are as follows:5

 
πεππ ttt

c
t

c
t eudex ++−= −− inf019446.0001480.0980553.0 21     (3) 

                               (0.0000)                         (0.8593) 
 

X
ttt

us
ttt rltcrxxx ε+−+++= −−− 111 036376.0042619.0336692.0528036.0221060.0  (4)

          (0.1773)             (0.0000)                        (0.0000)                       (0.9552)                         (0.0385) 
 
 
To evaluate the potential parameter instability we re-estimate each equation by considering 

two different sub-samples. For the core inflation equation,  the sub-samples estimation 

yields: 

 
 
1996:10 – 1999:05   (5) πεππ ttt

c
t

c
t eudex ++−= −− inf049148.0002188.0950851.0 21

                                                                       (0.0000)                          (0.9394)  
 
1999:06 – 2004:06   (6) πεππ ttt

c
t

c
t eudex +−−= −− inf008710.0006685.0008711.1 21

                                                                       (0.0000)                          (0.2092)  
 
 
For the output gap equation, the sub-samples estimation yields: 
 
1996:09 – 1999:12 
 
              (7)
  (0.1675)               (0.0001)                      (0.5394)                      (0.1731)                           (0.2263) 

X
ttt

us
ttt rltcrxxx ε+−−++= −−− 111 030888.0893024.2069202.0588008.0301036.0

 
2000:01 – 2004:06 
 
           (8)
    (0.0355)               (0.3548)                      (0.0000)                       (0.0150)                         (0.7830)  
  

X
ttt

us
ttt rltcrxxx ε++−++−= −−− 111 007044.0185126.4620912.0115780.0752512.0

 
We take these results as an indication of parameter instability of economic relevance. 

Performing a Chow test of the null of parameter stability on the output gap equation, we 
                                                 
5 Values in parenthesis are p-values. We show only two p-values in equations 3, 5 and 6 because we impose 

the dynamic homogeneity property on the nominal explanatory variables. 
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find a potential breakpoint at date 2000:01 and reject the hypothesis of no breakpoint at the 

5% significance level. Doing the same for the core inflation equation we find a potential 

breakpoint at date 1999:06. However, since the variances of the residuals for each of the 

sub-samples are significantly different, a Chow test is no longer satisfactory. Consequently, 

we perform a Wald test, as suggested by Watt (1979) and Honda (1982), which provides 

conclusive evidence against the stability of core inflation: we reject the hypothesis of equal 

parameters at the 5% significance level. 

 

Subsequent estimations are obtained by using a fixed-sized rolling window and 

taking into account the dynamic homogeneity property as well as some parameters 

restrictions which reflect some assumptions about long-term values for the real interest rate 

and the real exchange rate. The window size does not come from an optimization procedure 

and is set equal to fifty two observations. We use monthly data from September 1996 to 

May 2004. The first period estimations are obtained with data from September 1996 to 

December 2000. When using the fixed-sized rolling window, we obtain all the optimal 

nominal interest rates implied by each model for the forty two periods starting in January 

2001 and ending in June 2004. These implied optimal nominal interest rates represent one-

step ahead forecasts since we are mimicking a policy maker who optimizes a loss function 

subject to specifications estimated with all the available data up to that point.   

 
We assume no uncertainty for the real exchange rate equation and the rest of the 

equations for the exogenous variables. The technical complications of allowing a forward-

looking component in the real exchange rate equation makes it very difficult to consider 

uncertainty on this particular specification.6 In other words, estimating models derived from 

all the possible combinations of k regressors could be unwieldy when using GMM for 

specifications with forward-looking variables.   

 

 

 
                                                 
6 We decided to use an interest parity condition with delayed overshooting for the real exchange rate similar 

to the one in Eichenbaum and Evans (1995) and Gourinchas and Tornell (1996).  
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Recursive modeling is implemented by considering the following specifications: 

 
,: 1

,
1
,11, ititi

c
t

c
t

AS
ti uM +′+= − Xβπβπ                     (9) 

,: 2
,

2
,110, itititt

AD
ti uxxM +′++= − Xγγγ                 (10) 

 
where , are ( ) vectors of regressors under models , , obtained as a 

subset of the base set of regressors ,   

1
,itX 2

,itX 1×ik AS
tiM ,

AD
tiM ,

1
tX 2

tX

 
c
tt 2

1 [ −=
′

πX                   ] c
t 3−π tx 1−tx 2−tx 3−tx tdeinfeu 1deinfeu −t 2deinfeu −t 3deinfeu −t

 

2
2 [ −=
′

tt xX                   ]   3−tx us
tx 1−

us
tx 2− tltcr 1ltcr −t 1−tr 2−tr 3−tr 4−tr

 
 
where ,  is a vector of ones, and  is a ii uk e′= e )1( ×k iu )1( ×k  selection vector composed 

of zeros and ones, where a one in its j-th element means that the j-th regressor is included in 

the model. All variables are defined as above and ttt ir π12−= . The first lag of each  

dependent variable is always included in all specifications. Uncertainty on the specification 

of lags implies that the policy maker searches over 210 =  1024 specifications  to select the 

relevant demand and supply equations in each period. The selection criterion is either based 

on adjusted R2, Schwarz’s Bayesian Information Criterion (BIC) or Cross Validation. The 

formula for the latter is obtained from Bossaerts and Hillion (1999).  

 

The rest of the specifications for other variables is obtained from Roldán-Peña (2005) and 

given by the following: 

( ) t
t

us
te

ttt v
rr

ltcrltcrltcr +
−

++= +− 1200
)(

)( 1211 αα                 (11) 

t
nc
t

nc
t wdd ++= −110 ππ                   (12) 

nc
t

c
tt πλλππ )1( −+=                    (13) 

us
t t t tde dtcrπ π+ = +                    (14) 

and the VAR(2) system for the exogenous external variables: 

t
us
t

us
t

us
t

us
t

us
t

us
t

us
t iaiaxaxaaaa ϑπππ +++++++= −−−−−− 2615241322110              (15) 
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us
t

us
t

us
t

us
t

us
t

us
t sibibxbxbbbbx +++++++= −−−−−− 2615241322110 ππ              (16) 

              (17) t
us
t

us
t

us
t

us
t

us
t

us
t

us
t zicicxcxcccci +++++++= −−−−−− 2615241322110 ππ

 

Equations 11-14 represent the dynamic specifications for the real exchange rate, non-core 

monthly inflation, monthly headline inflation as a weighted sum of its core and non-core 

components and the purchasing power parity condition, respectively. The VAR(2) system 

represents the dynamics for the US monthly headline inflation, US output gap and US 

nominal interest rates obtained from the 3 month T-bill. See Roldán-Peña (2005) for 

estimation of Equations 11-17.   

 

We take into consideration only 960 models from all the possible combinations of 

10 regressors for both the aggregate supply and aggregate demand equations. This is the 

case since the 26 models resulting from not having the variables rt-1, rt-2, rt-3 and rt-4 are 

discarded as possible specifications for the output gap. Similarly, the 26 models resulting 

from not having the variables  xt, xt-1, xt-2 and xt-3  are eliminated from the set of possible 

specifications for core inflation. This is done in order to take into account only models that 

make monetary policy relevant to control inflation.    

 

Finally, we combine the output gap and core inflation specifications according to 

their rankings given by either BIC or adjusted R2 or Cross Validation– i.e. the best output 

gap specification with the best core inflation specification, the second best output gap 

specification with the second best core inflation specification, etc. Even though the 

uncertainty considered here relates only to the dynamic structure of the economy (thus 

omitting other factors that may influence uncertainty), the advantage of this approach is that 

it allows us to account for the number of lags with which monetary policy affects the 

economy.  
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Having estimated all possible models, a statistical criterion is used to select the best 

model in each period (recursive thin modeling). Alternatively, the information from the 

whole set of models can be used in each period (recursive thick modeling).7

 

Thin modeling discards all but one model for each dependent variable, leaving out 

of the decision-making process the information from (2k-1)*2 models – i.e. since the 

uncertainty about the number of lags only applies to the aggregate demand and aggregate 

supply specifications. Although the chosen model is the best according to some criterion, 

exclusively relying on it means that the policy maker does not consider the uncertainty 

stemming from both unstable parameters and model specification.  

 

One problem about thin modeling pointed out by Favero and Milani (2005) has to 

do with the lack of match between the ranking of models obtained from different statistical 

criteria. Figures 1 and 2 show scatter plots of models ranking according to adjusted R2 and 

BIC criteria for all the 960 specifications of aggregate supply and aggregate demand, 

respectively. 

*********************** 

Figures 1 and 2 about here 

*********************** 

 

The figures above show that the lack of match between the ranking of models also 

arises. For instance, the best output gap model according to adjusted R2 (BIC) is ranked in 

the 17th (162th) place by the BIC (adjusted R2) criterion. As for the core inflation, the best 

model according to adjusted R2 coincides with the best one ranked by the BIC criterion.  

However, any given selection criterion is prone to producing small, statistically 

                                                 
7 Recursive thick modeling involves estimating all 960 models and taking only the survivors of them into 

account to deal with the problem of model uncertainty at each point in time. Instead of choosing just one 

model, we use two averaging techniques to include the information of all models. We calculate an average of 

models with equal weights for each model, and a weighted average of models, in which weights vary 

according to the BIC or the adjusted R2 or the Cross Validation criterion. That is, under this last averaging 

technique the best models are those with larger weights.     
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insignificant differences among the best models. Dell’Aquila and Ronchetti (2004) find out 

that ranking is unreliable in the sense that the set of undistinguishable models can be large.  

 

Consequently, deciding which model to choose becomes hard. One way to evaluate 

the importance of this choice consists of finding how robust the key parameters are across 

both time and the 960 specifications. Figures 3, 4 and 5 show the variation of the long run 

coefficients for the real interest rate, the US output gap and the imported inflation across 

both time and specifications.8 The dotted line and the solid line placed on the grey area 

indicate the average of the long-run coefficients across the 960 models and the long-run 

coefficient given by the best model, respectively.  

   

************************ 

Figures 3, 4, and 5 about here 

************************ 

 

In the next section we will find out how relevant the range for those coefficients is 

to optimal policy.   

 
3. OPTIMAL MONETARY POLICY 
 

To assess the impact of recursive thick modeling, we calculate the optimal nominal interest 

rate paths based on the following model choices: 

 
a) Recursive thin modeling: the model with the best adjusted R2 in each period. 

b) Recursive thin modeling: the model with the best BIC in each period. 

c) Recursive thin modeling: the best model according to Cross Validation in each 

period. 

d) Recursive thick modeling: the average (simple or weighted) optimal monetary policy 

derived from all specifications for each statistical criterion.  

                                                 
8 Long run coefficients are obtained by adding all the coefficients of the corresponding variable for each 

specification.  
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The policy maker minimizes an intertemporal loss function of the form: 
 

[ ]
⎭
⎬
⎫

⎩
⎨
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=
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2
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22* .)(])1()(144)[1(
i

itititit
i

tt iiyEL φαππαφβ                  (18) 

         
The period loss function is quadratic in the deviations of output and inflation from their 

targets, and it includes a penalty for the policy instrument’s variability. The policy maker’s 

preference parameter α  represents the relative weight of inflation stabilization to output 

gap stabilization (the sum of the weights is normalized to one). Additionally, the other 

policy maker’s preference parameter φ  symbolizes the relative weight of interest rate 

smoothing to stabilization of inflation and output (also normalized to one). The policy 

maker’s minimization problem is conditional to the set of 2k specifications .  Μ

 

We proceed to solve the optimization problem under different assumptions 

regarding the policy maker’s preferences in order to evaluate which weighting scheme 

delivers the best performance in tracking the actual nominal interest rate. We calculate the 

optimal monetary policy rules implied by recursive thin and recursive thick modeling under 

all the criteria and averages for the six alternative preferences parameterizations: 

 

CASE 1: Flexible inflation targeting with weak interest rate smoothing:           

 α =0.5, φ =0.05.  

CASE 2: Flexible inflation targeting with  interest rate smoothing:         

 α =0.5, φ =0.2.  

CASE 3: Flexible inflation targeting with strong interest rate smoothing:    

 α =0.5, φ =0.3.  

CASE 4: Strong inflation targeting with strong interest rate smoothing:   

 α =0.7, φ =0.3. 

CASE 5: Quasi-extreme inflation targeting with interest rate smoothing:    

 α =0.9, φ =0.1. 

CASE 6: Extreme inflation targeting with weak interest rate smoothing:    

 α =1.0, φ =0.05. 
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Solving an optimal control with the loss function given by Equation (18) requires 

expressing Equations 9-17 with the corresponding algebraic transformations in state-space 

form. By following the Favero and Milani´s (2005) representation, we have 

 

1 1 1
j j

t t t t ti+ + += + +X A X B ε 1t+                (19) 
 
where the subscript t = 1, 2, 3,…..42  indicates the observations from 2001:01 to 2004:06 

while the superscript = 1, 2, 3,....960 denotes the model used.  j

The state space vector is: 
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1
1211111121111

us
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us
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c
ttttttt xxultcrltcrltcrxxx ++−−−++−+−−+

∗
++ = πππππππππX

             ]e
ttttt

us
t

us
t

us
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us
tttttt ltcrvzsiiwuiii 11111111

2
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The solution algorithm to the minimization problem of the loss function represented by 

Equation (18) and subject to Equations 9-17 is taken from Giordani and Söderlind (2004). 

The implied optimal policy rule is: 

 
j j

t ti = f Xt                        (20) 

 

where  j
tf  is a 960 x 42 x 33 matrix.  

 

Recursive thin modeling consists of estimating all possible models in every time 

period as new information comes along and old information gets thrown away. Out of our 

set of 960 estimated models, we choose the best one according to three different criteria: 

BIC, adjusted R2 and Cross Validation. Our estimation is based on a fixed-sized rolling 

window, which gives us 42 different time periods. This procedure is adequate for  a policy 

maker who obtains data in real time and learns slowly about structural breaks. Optimization 

is performed for every period, yet the parameters are subject to change in the future, 

making this a sub-optimal strategy for the policy maker.9

 
                                                 
9 This is the case since the optimal solution is computed assuming constant parameters through time.  
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Following Norman and Jung (1980), we used the concept of target controllability in 

order to eliminate models generating optimal rates that were not sensitive to changes in the 

parameters α  and φ . The surviving models were of rank 2 – i.e. the number of state 

variables to be controlled in the loss function.  

 

We also tried to eliminate more models by: (1) determining if the dynamic 

homogeneity property linear restriction was valid for the core inflation estimation and (2) 

simulating models with random explanatory variables in the spirit of Cooper and Gulen’s 

(2006) strategy. As for the former, when using a confidence interval greater than 1%, all of 

the models were eliminated for some periods. The 1% confidence interval basically rejected 

no model for every period.  

 

We followed Cooper and Gulen´s (2006) strategy by using non-repeating seeds to 

generate ten random N(0,1) predictive variables. We computed both the adjusted R-squared 

and the BIC criteria for all competing regression specifications in the presence of these 

random variables. We ran the simulation ten times to obtain the maximum (minimum) 

adjusted R-squared (BIC). However, we failed to eliminate specifications from our analysis 

as all competing regression specifications, during the whole rolling window analysis, 

outperformed those specifications generated in the presence of the random variables. We 

also simulated ten random ( , )i iN x σ  predictive variables, where and ix iσ denote the mean 

and standard deviation of real predictor i. Nonetheless, we achieved the same result. 

 

The following table reports the inclusion percentage of every explanatory variable 

used for both the best output gap and core inflation specifications through time.  

 

****************** 

Table 1 about here 

****************** 

 

Table 1 shows the set of variables belonging to the best specification for both the 

output gap and core inflation is changing through time. It is also noticeable that the first lag 
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of the US output gap   is the only variable belonging to the generating set of models that 

is always part of the best output gap specification.

us
tx 1−

10 Moreover, the set of variables being 

part of the best specification for both the output gap and core inflation is a function of the 

statistical criterion.  

 

The fact that we use a fixed-sized rolling window makes it possible to have a 

derived optimal policy that responds to either different coefficients when the same 

specification arises or different specifications when the set of inclusion variables changes.11       

     

4. OPTIMALITY RESULTS VS. ACTUAL NOMINAL RATES 
 

The following table shows the results for the six different cases of policy preferences using 

the BIC criterion. EW and WA stand for Equal Weights and Weighted Average, 

respectively. 

 

****************** 

Table 2 about here 

****************** 

 
The table above shows that under thick modeling and the policy maker’s parameters 

3.0,5.0 == φα , the average of all models with equal weights gives us the best adjustment 

to the actual data in terms of mean square errors.  

 

The following table shows the results for the six different cases of policy maker’s 

preferences using the 2R  criterion. 

 
 
                                                 
10 The other variables exhibiting a 100% inclusion appearance in the best model are always included by the 

policy maker.  

11 Optimal policies are a function of both the policy maker’s preferences and the dynamic structure of the 

economy.   
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****************** 

Table 3 about here 

****************** 

 

The table above shows that under thick modeling and the policy maker’s parameters 

3.0,5.0 == φα , the weighted average of all models gives us the best adjustment to the 

actual data in terms of mean square errors. It is important to mention that the simple 

average of optimal nominal interest rates here is different from the results obtained for the 

BIC criterion. This occurs because the combinations of output gap and core inflation 

specifications are not the same.12  

 

5. ASSESING THE GENERALIZATION PERFORMANCE OF COMPETING  

    REGRESSION SPECIFICATIONS 

 

It is widely acknowledged that statistical models are built either to predict what the 

responses are going to be to future explanatory variables or to extract useful information 

about the true data-generating process. Thus far, we have applied to two techniques to 

gauge the in-sample prediction error: Schwarz’s criterion and adjusted 2R . In this section, 

we apply a simple and broadly used method for estimating the generalization performance 

of each competing regression specification:13 the r-fold cross-validation of Breiman, 

Friedman, Olshen, and Stone (1984).  

  

 To understand r-fold cross-validation, suppose that the sample size n can be written 

as , where and are integers.  Let us divide the data set instances {  into r n rd= r d 1,..., }n

                                                 
12 Optimal nominal interest rates are a function of combinations of output gap and core inflation specifications 

which vary according to the statistical criterion.  

13 Hastie et al. (2001, p. 193) indicate that the generalization performance of a statistical model “relates to its 

prediction capabilities on independent test data.”   
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subgroups which are mutually exclusive.1{ ,..., }rs s 14 Without loss of generality, suppose 

that the division is: 
21

1,..., , 1,..., 2 ,..., ( 1) ,..., .
rs ss

d d d r d rd+ −  

 

Then the cross-validation estimate of generalization performance for the mth model is, 

 

               ( )* ˆCV , ( )   for  1,..., .i

i i

s
m s sL y f x i r−= =                            (21) 

 

where is the estimated model computed with the  subgroup of the data removed 

and 

ˆ ( )isf − ⋅ is

( )L ⋅ represents a loss function.  

  

 In this paper, we use a loss function based on relative errors. In particular, we use 

the median relative absolute error (medRAE) advocated by Armstrong and Collopy (1992). 

To calculate the relative absolute error for the mth model, we simply divide the absolute 

error of the estimated function ˆ ( )is
jy f x−− j  by the absolute error of a benchmark 

j jy rw−  for , where 1 2 and , ,..., .i ij s s s s s∈ = r jrw  is the prediction of the random walk 

model (without drift) for the response variable. Then we obtain the median value of the 

relative absolute errors produced by all the subgroups.  

   

 We eliminated from our analysis all competing specifications that could not 

outperform the benchmark –i.e. those whose medRAE was greater than one. It is worth 

mentioning that, on average, 720 models were discarded per period. The survivors were 

ranked according to their generalization performance. Note that our final models were 

estimated with the data contained in all the subgroups.  

 

The following table shows the results for the six different cases of policy maker’s 

preferences using the Cross Validation criterion. 
                                                 
14 Breiman et al. (1984) suggest that the partition should be random to evade possible biases.  
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****************** 

Table 4 about here 

****************** 

 

When the policy maker’s parameters are 3.0,5.0 == φα , the table above shows 

that the average of all models with equal weights and the weighted average give the best 

adjustment to the actual data in terms of mean square errors.   

 

6.1. DIEBOLD AND MARIANO’S SIGN TEST STATISTIC AND BOOTSTRAP  

       REPLICATIONS  

 

To formally test whether or not different cases of policy parameter preferences contain 

information that it is not present in any other case, we implement Diebold and Mariano’s 

(1995) sign test statistic. We set the equally weighted committee, with 0.5 and 0.3α φ= = , 

from the cross-validation criterion as our specific case. Let mp be the vector of predictions 

of the case of policy parameter preference m, t be the vector of actual interest rates, 

and specificp be the vector of predictions of the specific case mentioned above. Then, 

 and (m me t p= − ) )(specific specifice t p= −  denote the corresponding error vectors. The sign test 

statistic {S} is defined for the case of policy parameter preference m by:   

 

                   [ ]∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −>=

n

j

a

jmm NdI
n

S
1

, )1,0(~
2
102                                             (22) 

 

where  is the so-called loss differential at time j, and I is an 

indicator function. We compute the S statistic for all of the different cases of policy 

parameter preferences and show the results in Table 5.  

,m jd 2
, , ,m j specific j m jd e e= − 2

,

 

Significant and negative (positive) values for S indicate a significant difference 

between the two forecasting errors, which imply a better accuracy of the specific (m) policy 
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parameter preference. Table 5 exhibits the prediction errors of all competing policy 

parameter preferences cannot outperform the specific case. Consequently, recursive thick 

modeling with equal weights and flexible inflation targeting approximates the recent 

historical behavior of nominal interest rates in Mexico better than both recursive thin 

modeling and all the cases with a low penalty on interest rate variability. 

 

Another possibility to test the null hypothesis that there is no qualitative difference 

between forecasts from any two models is to use re-sampling techniques. Re-sampling 

techniques are computer-intensive statistical tools for estimating the distribution of a 

parameter that in other ways would be difficult to obtain.15 The traditional re-sampling 

algorithm to compute the difference between two mean square prediction errors consists of 

the following steps: (1) randomly draw observations with replacement from a sample of 

size n = 42 produced by the specific aforementioned policy parameter preference and 

obtain its mean square prediction error, (2) using the same random rows from step 1, 

calculate the mean square prediction error for a different case of policy parameter 

preference, (3) compute the difference between the MSEs, and (4) repeat steps 1 and 2 five 

thousand times to obtain a set of bootstrap replications. 

 

Table 5 also shows the p-value for each different case of policy parameter 

preference. The p-value represents the proportion of bootstrap estimates in which the 

difference between the MSEs is greater than zero. Thus, low significant p-values indicate 

that the MSE of policy parameter preference m is lower than the MSE of the specific case. 

Table 5 shows that none of the competing policy parameter preferences outperforms the 

specific case. This result is consistent with Diebold and Mariano’s (1995) sign test statistic. 

 

****************** 

Table 5 about here 

****************** 

                                                 
15 Re-sampling techniques are described in more technical detail in Hall (1992) and Davison and Hinkley 

(1997).  
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6.2. DIRECTION-OF-CHANGE FORECASTABILITY 

 

Thus far, the analysis exhibits evidence supporting the use, for the choice of monetary 

policy, of committees that propagate model uncertainty and simultaneously achieve a 

higher generalization performance than a naïve benchmark´s. In a related study, Favero and 

Milani (2005) confirm the usefulness of propagating model uncertainty in monetary policy. 

However, they do not evaluate its usefulness in terms of direction-of-change forecastability. 

Are those committees that propagate model uncertainty helping us understand the ups and 

downs of the nominal interest rate?    

 

A good model for monetary policy produces out-of-sample forecasts satisfying 

several important properties, including high sensitivity and specificity. Sensitivity of a 

model is defined as the proportion of truly up-movement cases that have a predicted 

nominal interest rate change higher than zero. The specificity represents the proportion of 

truly down-movements cases that have a predicted nominal interest rate change lower or 

equal to zero 

 

More formally, if ,1 ,,...,o o nx x are the predictions for a group of n down-movement 

cases (our n corresponds to twenty-four) and 1,1 1,,..., mx x  are the forecasts for a group of m 

up-movement cases (our m corresponds to seventeen), and, to keep the analysis simple, 

higher scores indicate a higher probability of an up-movement. For a given cut-off c (our c 

corresponds to zero), the specificity is 0(P X c)≤  where 0X  is a random observation from 

the down-movement cases, whereas the sensitivity is  where 1(P X c> ) 1X  is a random 

observation from the up-movement cases. A naïve estimator of the variance of the 

estimated sensitivity  and of the estimated specificity  (not reported) may be given 

by:  

∧

Se
∧

Sp

                                                                                    (23) mSeSeSeVar /1 ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ ∧∧
∧

∧
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                                                                                    (24) nSpSpSpVar /1 ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ ∧∧
∧

∧

  

The sensitivity and specificity results are also shown in Table 5. For our test-set, the 

models that achieved the statistically highest accuracy during the interest rates downward 

movements were the committees selected via cross-validation with 0.5 and 0.3α φ= = . 

This result shows a policy maker who cares about inflation and output stabilization the 

same during periods characterized by reductions in the interest rates. One can easily 

compute the significance of the estimated sensitivity and specificity via a 95% confidence 

interval—i.e., . If the 95% confidence interval 

does not include 0.50, then the estimated sensitivity or specificity is statistical different 

from 0.50. That is, the model discriminates either positive or negative movements better 

than random.   

∧
∧∧

∧
∧∧

⎟
⎠
⎞

⎜
⎝
⎛⋅+〈〈⎟

⎠
⎞

⎜
⎝
⎛⋅− SeVarSeSeSeVarSe 96.196.1

 

The models that achieved the highest accuracy during the interest rates upward 

movements were those models with both  5.0=α and  05.0=φ  and with 

0.9 and 0.1α φ= = . Note, however, that such models did not propagate model uncertainty. 

That is, optimal monetary policy rules, in terms of up-movement predictability, were 

obtained via a single model and not with a weighted committee (or ensemble).  Metz (1993) 

indicates that one should select the model with the highest lower limit when either the 

sensitivity or the specificity are the same. In our case, the model with 0.9 and 0.1α φ= =  

produces specificity levels larger than those corresponding to the model with  5.0=α and 

 05.0=φ . This result suggests a policy maker more worried on inflation stabilization 

during upward movements in the interest rates.  

 

To further assess how different test-set distributions affect the MSE criterion for 

those models selected via the cross-validation criterion, we evaluate the following test-set 

distributions (expressed as percentages of up movements): 10%, 25%, 50%, 75%, and 90%. 

To ensure that all experiments have the same test-set size, no matter the class distribution, 
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the test-set size is made equal to the total number of up movements. Each test set is then 

formed by randomly sampling from the original test-set data, without replacement, such 

that the desired class distribution is achieved. To enhance our ability to identify differences 

in predictive performance with respect to changes in test-set class distribution, the 

experiments are based on a thousand runs. The results are shown in Table 6, where we 

report the effect of test-set class distribution on the MSE. The first two columns in Table 6 

specify the policy parameter preferences as well as the model (or weighted committee). The 

next five columns present the average MSE for the five fixed class distributions. The values 

reported in the main rows are the actual mean square error averages, and the numbers in 

parenthesis are the standard errors.     

 

 

****************** 

Table 6 about here 

****************** 

 

The intuition behind varying the test-set class distribution is that a good model for 

generating monetary policy rules should generate desirable properties when predicting out-

of-sample regardless of the test-set distribution. Evidently, this is not the case. Table 6 

shows models that exhibit a larger percentage of error when forecasting more negative 

changes in nominal interest rates with the exception of equally and unequally weighted 

committees for both 0.5 and 0.3α φ= =  and 0.5 and 0.05α φ= = . Note also the 

consistency of the results reported in Table 6 with those reported in Table 5. For example, 

the equally weighted model with 0.5 and 0.3α φ= =  has a relatively high specificity. 

Therefore, it is expected that when the proportion of down-movement increases in the test-

set, the MSE decreases. We can see from Table 6 that this is the case. As more down-

movements are in the test-set, the MSE decreases. The opposite happens for the best model 

with 0.9 and 0.1α φ= = , which achieved a high sensitivity. As more down-movements are 

in the test-set, its MSE increases considerably.    
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By using the two-sided test of the null that the population mean difference is zero 

against the alternative that the population mean difference is not zero, we find that for 

higher proportions of up-movements, the model with 0.9 and 0.1α φ= =  produces MSEs 

smaller than those corresponding to the model with  5.0=α and  05.0=φ . Consequently, 

this result confirms that the model with 0.9 and 0.1α φ= =  works better to understand the 

positive movements than the model with 0.5 and 0.05α φ= =  .  

 

7. CONCLUSIONS 

 

This paper finds that the uncertainty about the structure of the model plays a significant role 

in understanding nominal interest rates in Mexico. Particularly, we find a better 

approximation to the recent historical nominal interest rates when one succeeds to assess 

and propagate model uncertainty than when one fails to disseminate model uncertainty. 

Additional tests establish a policy maker who cares about inflation and output stabilization 

the same for downward movements in nominal interest rates, but suggest a policy maker 

with a higher preference for inflation stabilization for upward movements in nominal 

interest rates. 

  

At fist glance, these results may suggest some market inefficiency. Nevertheless, it 

is not clear that investors could profitably trade on these patterns because transaction costs 

are likely to wipe out any potential profits. However, the results are interesting since they 

fail to indicate the existence of an exact true model of the Mexican economy, yielding 

insights into how policy makers should adopt the model building process.    
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Output gap Core inflation
Variable Adjusted R-squared BIC Variable Adjusted R-squared BIC
Constant 100.00 100.00 Constant 0.00 0.00

100.00 100.00 100.00 100.00
16.67 0.00 40.48 11.90
76.19 26.19 88.10 80.95
100.00 100.00 16.67 40.48
4.76 0.00 26.19 11.90
16.67 0.00 50.00 38.10
33.33 2.38 35.71 9.52
90.48 69.05 88.10 78.57
9.52 2.38 97.62 45.24
69.05 30.95 16.67 9.52
14.29 0.00 52.38 0.00

Table 1. Percentage of appearances of the explanatory variables in the best model through time.
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Loss Function CETES
EW WA 28-day rate

Mean    
Std       
MSE

Mean    
Std       
MSE

Mean    
Std       
MSE

Mean    
Std       
MSE

7.86     
4.65      

9.94

11.35    
5.69      
41.17

8.63     
4.20      

6.77

7.89     
3.25      

0

6.99     
4.58      

8.05

8.34     
3.48      

2.30

7.53     
4.18      

4.19

7.89     
3.25      

0

7.04     
4.37      

6.09

8.00     
3.56      

1.68

7.50     
4.06      

3.55

7.89     
3.25      

0

7.07     
4.44      

7.07

8.13     
3.57      

1.84

7.52     
4.11      

4.03

7.89     
3.25      

0

7.79     
4.63      

9.63

10.20    
4.12      
14.62

8.24     
4.10      

5.48

7.89     
3.25      

0

8.70     
4.43      
12.84

12.73    
6.87      
67.30

9.44     
3.70      

8.10

7.89     
3.25      

0

Table 2 - Optimal and actual 28-day CETES rate paths: adjusted BIC descriptive statistics 
Thick Recursive 

Thin 

2
1

22* )(])1()()[1( −−+−+−−= ttt iiyL φαππαφ

05.0,5.0 == φα

2.0,5.0 == φα

3.0,7.0 == φα

1.0,9.0 == φα

05.0,0.1 == φα

3.0,5.0 == φα
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Loss Function CETES

EW WA 28-day rate
Mean    

Std       
MSE

Mean    
Std       
MSE

Mean    
Std       
MSE

Mean    
Std       
MSE

8.84     
4.17      

9.07

11.02    
5.03      
35.77

11.00    
5.02      
35.29

7.89     
3.25      

0

7.36     
5.06      

9.48

8.10     
3.69      

5.22

8.46     
3.22      

2.87

7.89     
3.25      

0

7.46     
4.80      

7.37

7.74     
3.79      

4.15

8.09     
3.38      

1.85

7.89     
3.25      

0

7.45     
4.96      

8.55 

8.12     
3.57      

3.11

8.31     
3.35      

2.08

7.89     
3.25      

0

8.48     
5.08      
11.41

10.34    
4.27      
20.72

10.33    
4.27      
20.46

7.89     
3.25      

0

9.71     
4.93      
16.37

12.25    
6.14      
58.11

12.23    
6.12      
57.63

7.89     
3.25      

0

Table 3 - Optimal and actual 28-day CETES rate paths: adjusted R-squared descriptive statistics 

 Recursive 
Thin 

Thick

2
1

22* )(])1()()[1( −−+−+−−= ttt iiyL φαππαφ

05.0,5.0 == φα

2.0,5.0 == φα

3.0,7.0 == φα

1.0,9.0 == φα

05.0,0.1 == φα

3.0,5.0 == φα
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Loss Function CETES

EW WA 28-day rate
Mean    

Std       
MSE

Mean    
Std       
MSE

Mean    
Std       
MSE

Mean    
Std       
MSE

9.62     
3.04      
26.60

10.65    
4.47      
31.02

10.62    
4.434     

30.61

7.89     
3.25      

0

8.73     
2.14      

6.33

8.45     
3.07      

3.93

8.45     
3.06      

3.91

7.89     
3.25      

0

8.55     8.12     
3.12      

1.59

8.12     
3.11      

1.59

7.89     
3.25      

0

8.25     
3.13      

1.86

8.24     
3.12      

1.84

7.89     
3.25      

0

9.56     
3.20      
10.97

9.55     
3.20      
10.93

7.89     
3.25      

0

10.95    
3.68      
23.26

10.93    
3.67      
23.08

7.89     
3.25      

0

Table 4 - Optimal and actual 28-day CETES rate paths: adjusted Cross Validation descriptive statistics 

 Recursive 
Thin 

Thick

2.31      
4.05

8.56     
2.38      

4.23

9.02     
2.60      
13.03

9.35     
3.53      
24.08

 31

2
1

22* )(])1()()[1( −−+−+−−= ttt iiyL φαππαφ

05.0,5.0 == φα

2.0,5.0 == φα

3.0,7.0 == φα

1.0,9.0 == φα

05.0,0.1 == φα

3.0,5.0 == φα
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Table 5. External validity for six different cases of policy maker’s preferences using several model selection criteria. 

 Cross-validation    BIC adjusted R^2  

         
Sign test 
statistic 

Bootstrap p-
value Sensitivity Specificity

Sign test 
statistic 

Bootstrap p-
value Sensitivity Specificity

Sign test 
statistic 

Bootstrap p-
value Sensitivity Specificity

EW  --           -- 0.41 0.67 -0.62 0.61 0.35 0.54 0.62 0.96 0.35 0.58
WA  -0.31            0.27 0.41 0.67 -2.16 1.00 0.41 0.50 0.62 0.62 0.35 0.54 5.0=α , 

3.0=φ  BM  -2.16            1.00 0.59 0.54 -4.01 1.00 0.35 0.46 -4.32 1.00 0.41 0.54
EW  -1.23            1.00 0.59 0.54 -1.23 0.94 0.35 0.54 0.00 0.98 0.41 0.50
WA  -1.23            1.00 0.59 0.54 -2.16 1.00 0.41 0.46 0.31 0.87 0.35 0.46 5.0=α , 

2.0=φ  BM  -2.47            1.00 0.59 0.54 -4.32 1.00 0.29 0.46 -4.63 1.00 0.29 0.54
EW  -3.09            1.00 0.47 0.54 -3.39 1.00 0.47 0.58 -2.47 1.00 0.47 0.63
WA  -3.09            1.00 0.41 0.54 -2.47 1.00 0.29 0.46 -2.47 1.00 0.47 0.63 5.0=α , 

05.0=φ  BM  -5.25            1.00 0.65 0.38 -4.94 1.00 0.35 0.50 -4.94 1.00 0.41 0.63
EW  -4.32            1.00 0.41 0.58 -4.94 1.00 0.53 0.58 -4.63 1.00 0.47 0.54
WA  -4.32            1.00 0.53 0.58 -3.39 1.00 0.35 0.50 -4.63 1.00 0.47 0.540.1=α , 

05.0=φ  BM  -5.55            1.00 0.59 0.46 -4.01 1.00 0.41 0.54 -5.55 1.00 0.35 0.58
EW  -0.93            0.98 0.41 0.58 -0.62 0.74 0.35 0.50 0.31 0.89 0.53 0.50
WA  -0.93            0.97 0.41 0.58 -2.47 1.00 0.41 0.46 0.93 0.70 0.47 0.467.0=α , 

3.0=φ  BM  -2.16            1.00 0.59 0.50 -4.32 1.00 0.35 0.46 -4.32 1.00 0.41 0.50
EW  -3.09            1.00 0.35 0.58 -4.94 1.00 0.41 0.63 -4.63 1.00 0.41 0.58
WA  -3.09            1.00 0.35 0.58 -4.01 1.00 0.29 0.54 -4.63 1.00 0.41 0.58 9.0=α , 

1.0=φ  BM  -4.94            1.00 0.65 0.46 -4.94 1.00 0.35 0.50 -5.55 1.00 0.35 0.54
                                

 

               
 
 

 



 Table 6. Effect of test-set class distribution on the MSE.  
  Out-of-sample MSE when using specified test-set distributions 
  (test-set distribution expressed as % of up-movements)  
  10 25 50 75 90  
        

EW 
1.27     

(0.27) 
1.45     

(0.35) 
1.50     

(0.36) 
1.54     

(0.32) 
1.59    

(0.23)  

WA 
1.36     

(0.28) 
1.41      

(0.33) 
1.45     

(0.36) 
1.53     

(0.31) 
1.60    

(0.23)  
 5.0=α , 

3.0=φ  BM 
4.40    

(0.93) 
3.94     

(1.00) 
3.37     

(1.00) 
2.83     

(0.86) 
2.34     

(0.58)  

EW 
3.99     

(1.55) 
3.86     

(1.76) 
3.66      

(1.70) 
3.63     

(1.50) 
3.50     

(1.04)  

WA 
3.99    

(1.54) 
3.97     

(1.71) 
3.72     

(1.73) 
3.59     

(1.47) 
3.47     

(0.98)  
 5.0=α , 

2.0=φ  BM 
6.72    

(1.36) 
6.12     

(1.45) 
5.34     

(1.44) 
4.58     

(1.20) 
3.96     

(0.83)  

EW 
29.36   
(9.00) 

30.67   
(10.89) 

31.30     
(12.43) 

33.54  
(10.90) 

34.33   
(7.60)  

WA 
28.73   
(9.13) 

29.95   
(11.52) 

30.74   
(11.88) 

32.20   
(10.49) 

33.77   
(7.44)  

 5.0=α , 
05.0=φ  BM 

26.52   
(4.57) 

25.23   
(5.11) 

23.08    
(5.15) 

21.18   
(4.39) 

19.97  
(3.04)  

EW 
27.31   
(8.12) 

25.70   
(9.05) 

22.83   
(9.21) 

20.18   
(7.49) 

18.36    
(5.30)  

WA 
27.40   
(8.26) 

25.18   
(9.23) 

22.42   
(8.85) 

20.11   
(7.42) 

18.08   
(5.23)  

0.1=α , 
05.0=φ  BM 

25.84   
(4.49) 

23.90   
(5.03) 

22.06   
(4.82) 

20.29   
(4.23) 

18.68   
(2.79)  

EW 
1.81    

(0.37) 
1.80     

(0.42) 
1.72     

(1.44) 
1.68     

(0.38) 
1.66    

(0.25)  

WA 
1.81     

(0.36) 
1.77     

(0.41) 
1.75     

(0.43) 
1.69     

(0.37) 
1.64    

(0.24)  
7.0=α , 
3.0=φ  BM 

4.69    
(1.01) 

4.25     
(1.05) 

3.60     
(1.07) 

2.97     
(0.91) 

2.51     
(0.63)  

EW 
13.97   
(4.47) 

12.47    
(4.95) 

10.52    
(4.95) 

8.57     
(4.28) 

7.26     
(2.86)  

WA 
13.77   
(4.60) 

12.61   
(4.99) 

10.73   
(4.87) 

8.82     
(4.09) 

7.18     
(2.80)  

 9.0=α , 
1.0=φ  BM 

13.94   
(2.59) 

12.95    
(2.90) 

11.76   
(2.80) 

10.25   
(2.32) 

9.36     
(1.62)  
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Figure 1. Scatter plot of models ranking under BIC and adjusted R2 for all the 960 possible 

specifications of core inflation for the last period. 
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Figure 2. Scatter plot of models ranking under BIC and adjusted R2 for all the 960 possible 

specifications of  the output gap for the last period. 
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Figure 3. Variation of the real interest rate coefficient across specifications and time. 
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Figure 4. Variation of the US output gap coefficient across specifications and time. 
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Figure 5. Variation of the imported inflation coefficient across specifications and time. 
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