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Abstract 

This paper uses classifier induction to categorize the predictable components in stock 

returns according to the particular movements they can actually predict. We document 

empirical results that suggest past returns can be used to (a) discriminate either absolute, 

or negative, or positive large returns from the rest of stock movements regardless of 

whether or not they exhibit low-order serial correlation, and (b) discriminate up from 

down movements only when such returns are serially correlated.  
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Both academic finance and industry practice have long been interested in predicting 

future stock returns by using publicly available information.1 Although recent research 

indicates that short-horizon returns are predictable from past returns (see, e.g., Fama 

(1965); Lo and MacKinlay (1988); Conrad and Kaul (1988); Jegadeesh (1990); and Kaul 

(1996)), it is not clear what type of movements one is able to predict.   

The purpose of this study is to try to categorize the predictable components in 

stock returns according to the particular movements they can actually predict. We 

examine the (CRSP) portfolio of firms with market values in the largest NYSE-AMEX 

quintile in the context of classifier induction, which provides us with several advantages 

over previous work. First, it allows us to explicitly evaluate the predictability of large 

price changes. Second, classification techniques enable us to assess the forecastability of 

absolute large returns. Third, classifier induction is a well-suited tool to test whether or 

not large U.S. stocks exhibit direction-of-change predictability, which is found in 

emerging market indices.2  

Our evidence suggests that past returns can be used to (a) discriminate either 

absolute, or negative, or positive large returns from the rest of stock movements 

regardless of whether or not they exhibit low-order serial correlation,3 and (b) 

discriminate up from down movements only when such returns are serially correlated. 

Even though these results do not necessarily imply that the stock market is inefficient or 

that stock prices are not rational appraisals of “fundamental” values, they improve our 

ability to describe the time-series behavior of security returns.         

The remainder of the paper proceeds as follows. In Section I, we provide a brief 

review of the classification technique and accuracy measures employed in this study. 
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Movement codification and data sets are described in Section II. We apply the 

classification technique described in Section I to the daily returns of the (CRSP) portfolio 

of firms with market values in the largest NYSE-AMEX quintile, and report the out-of-

sample results in Section III. We summarize briefly and conclude in Section IV. 

I. Classification Techniques 

In the function approximation problem one has a system consisting of a random 

response variable y and a set of random explanatory variables { }1,..., nx x=x . Given a 

training sample {  of known -values, the goal is to find a function  

that maps x to y, such that over the joint distribution of all -values, the expected 

value of some loss function is minimized.  

}1
, N

i iy x ( , )y x *( )F x

( , )y x

 Regression and classification problems can be viewed as a task in function 

approximation. In this paper we will focus on classification problems, which allow us to 

concentrate on movements of interest, such as large price changes or returns’ signs. In a 

classification problem, the goal is to discriminate between two (or more) populations, 

given a set of explanatory variables. Are lagged returns capable of providing useful 

information for discriminating price changes solely under the presence of serially 

correlated returns?  

To answer this question empirically, we must test the out-of-sample 

discriminatory accuracy of the classifiers trained to understand specific movements. In 

addition, the out-of-sample performance of the classifiers should be evaluated with a 

technique invariant to a priori class probabilities and independent of a decision threshold 

(or cut-off value), and the statistical significance of such performance must be assessed 
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through re-sampling techniques to avoid misleading inference due to a possible 

underestimation of parameter uncertainty. 

Evaluating the out-of-sample predictability accuracy in a large test sample—e.g., 

one greater than one thousand observations (see, for instance, Henery (1994))—allows us 

to evade the poor approximation of the large-sample theory to the actual finite-sample 

distribution of test statistics when explanatory variables are persistent (see, e.g., 

Stambaugh (1999); and Elliot and Stock (1994)). In other words, we will not conclude 

that there is strong evidence of predictability of returns based on t-statistics or other non-

parametric measures of predictor significance, such as relative contribution, partial 

dependence plots, or predictor’s survival. In fact, we will confirm or refute the existence 

of predictable behavior of security returns through the comparison of the out-of-sample 

accuracy of the trained classifier versus the one of a random classifier.  

Furthermore, assessing the forecastability with a technique invariant to a priori 

class probabilities and independent of a decision threshold (or cut-off value) permits the 

robust assessment of a classifier’s accuracy in the presence of unbalanced data bases, a 

characteristic which the success rate (or classification error) criterion does not possess 

(see, e.g., Hand (1997)). Additionally, it eliminates the necessity of selecting a cut-off 

value with an ad hoc approach.                   

 In Section I.A we provide a brief review of tree-based models, which are the 

cornerstone of the Gradient Boosting Machine, which is the classification technique used 

in this study. The Gradient Boosting Machine is described in Section I.B. The receiver 

operating characteristic (ROC) curve, used to evaluate the discriminatory accuracy, is 

discussed in Section I.C. 
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A. Tree-based models 

      The origins of classification trees or hierarchical classification come from two 

areas of investigation. In the field of statistical pattern recognition, Breiman, Friedman, 

Olshen, and Stone (1984) developed a technique named CART (Classification and 

Regression Trees). The Machine Learning community provided a computer program 

called ID3, which evolved into a new system named C4.5 (Quinlan (1986, 1993)).     

Tree-based techniques partition the explanatory variables space into a set of 

rectangles and then fit a simple model to each one. A tree-based model tries to find the 

split that maximizes the decrement in an impurity function (or loss function) in order to 

make a tree grow. This is done iteratively until a certain amount of observations is 

reached or no further decrements in impurity functions are found. More formally, a tree 

may be expressed as   

1

( ; ) ( ),
J

j
j

T Iγ
=

Θ = ∈∑x x jR

.

                                                  (1) 

with parameters 1{ , }J
j jR γΘ =  Where jγ  (a constant) is assigned to a region ( jR ). The 

constant can be a value, a probability or a class label assigned to an element in the region 

jR . is usually treated as a meta-parameter and can be interpreted as the maximum 

amount of admissible interactions among explanatory variables less one, and 

J

( )I • is an 

indicator function. Here the parameters 1{ , }J
j jR γΘ =  are found by minimizing the 

empirical risk, like in the following equation: 

1
arg min ( , )

i j

J

i j
j R

L y γ
∧

Θ
= ∈

Θ = ∑ ∑
x

                                                  (2) 
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where denotes a loss function. This is an extraordinary combinatorial optimization 

problem, so we must relay on sub-optimal solutions. The aforementioned optimization 

problem can be divided into two parts. The first one, finding 

( )L •

jγ  given jR , is typically 

trivial, where jγ  is the modal class of observations falling in region jR . The difficulty of 

this combinatorial optimization problem is based on finding jR . A helpful solution is to 

employ heuristic methods.  

Safavian and Landgrebe (1991) provide a survey on heuristic methods proposed 

for designing decision trees. The most popular heuristic method in tree-based models is 

the top-down recursive partitioning, which starts with a single region covering the entire 

space of all joint input values. This is partitioned into two regions by choosing an optimal 

splitting input variable jx  and a corresponding optimal split point s. Values in x  for 

which jx s≤  are defined to be the left daughter region, and those for which jx s>  

denote the right daughter region. Then each of this two daughter regions is optimally 

partitioned with the same strategy, and so forth.   

 In this article we replaced the loss function with the Gini index, given by 

1
Gini index : (1 ).

K

mk mk
k

p p
=

−∑                                                   (3) 

where in a node m, representing a region jR , let mkp  be the proportion of class k 

observations in the node m, and K represents the total number of classes or populations in 

the study.  
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B. The Gradient Boosting Machine 

 Boosting was created from the desire to transform a collection of weak classifiers 

into a strong ensemble or weighted committee. It is a general method for improving the 

performance of any learning algorithm. Boosting was proposed in the computational 

learning theory literature by Schapire (1990) and Freund (1995). Freund and Schapire 

(1997) solved many practical difficulties of earlier boosting algorithms with the creation 

of AdaBoost.M1. 

Much has been written about the success of AdaBoost.M1 in producing accurate 

classifiers. In fact, one of the main characteristic of this procedure is that the test error 

seems to consistently decrease and then level off as more classifiers (trees) are added, 

without having an ultimately increase. 

 Recent explanations of AdaBoost.M1’s performance have focused on Boosting as 

a gradient descent algorithm that minimizes some loss functions (Friedman, Hastie, and 

Tibshirani (2000)). Ridgeway (1999) traces the developments of boosting methodology 

and its applications to the exponential family and proportional hazards regression models.   

 Friedman (2001) applies Boosting to a variety of prediction settings, which 

includes non-linear and robust non-linear regression problems via a Gradient Boosting 

Machine (hereafter GBM). In this technique, function approximation is viewed from the 

perspective of numerical optimization in the function space, rather than in the parameter 

space. The generic algorithm of the GBM is shown in Figure 1. Hastie, Tibshirani, and 

Friedman (2002, p. 345) provide the specific algorithm for k-class classification 

problems.    
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********************** 

Insert Figure 1 about here 

********************** 

 With the purpose of increasing execution speed, approximation accuracy, and 

robustness against over-fitting we incorporated randomness in the procedure as described 

in Friedman (2002). At each iteration, a sub-sample consisting of 50 percent of the total 

observations is drawn at random (without replacement) from the training sample. This 

sub-sample is then used to fit the tree and compute the model output for the current 

iteration. The loss function employed in all our experiments with the GBM was the 

Bernoulli function, and as mentioned in Section I.A, the loss function used for the tree-

based models was the Gini index. 

 The GBM has three tuning parameters: the total number of iterations M, the 

learning rate (shrinkage parameter v) and the level of interaction among explanatory 

variables J.  It is widely known that fitting the data too well can lead to over-fitting, 

which degrades the accuracy power on independent data bases. However, M and v do not 

operate independently—i.e., smaller values of v lead to larger values of the “optimal” M. 

 Friedman (2001) finds that low values of v (v < 1%) favor better accuracy on test 

samples. To get reliable estimates, we opted for five hundred trees in the forest (M) and 

fixed the shrinkage parameter (v) to one percent. Clearly, better results may be obtained if 

we monitor such parameters either in a validation set or with bootstrap’s by product—i.e., 

out-of-bag estimates. However, these strategies were not carried out to avoid possible 

data-snooping effects and as a way to illustrate the effectiveness of the GBM as a tool for 

prediction.  
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Hastie, Tibshirani, and Friedman (2001) indicate that 4 8J≤ ≤  works well in the 

context of boosting with results being fairly insensitive to particular choices in this range. 

Consequently, we fixed J equal to five in all our experiments. It is worth mentioning that 

J also represents the stopping criteria of the top-down algorithm of the tree-based models.      

Note that we do not use any forward information in estimating the GBM. In other 

words, fixing the GBM’s parameters ensures that, under the presence of a test sample, we 

are computing (and evaluating) our probabilistic forecasts completely out-of-sample and 

without any ‘look-ahead’ or ‘peeking’ bias. The implementation was carried out in R: 

Environment for Statistical Computing and Graphics with the following add-on package: 

gbm (developed by Greg Ridgeway).   

 Admittedly, the use of predictive (machine) learning techniques in the domain of 

financial time series remains an important challenge for future research to develop a 

procedure capable of incorporating temporal dependence, e.g., how should one model the 

movements of a pure ARIMA(p,d,q) process? One promising direction of future 

investigation is to consider alternatives to the traditional bootstrap in the election of the 

training cases. Although the traditional bootstrap is useful for its simplicity, it suffers 

from a well-known deficiency, for instance, inappropriateness for time series data. A 

popular alternative that overcomes this particular deficiency is the moving block 

bootstrap (Künch (1989)), which divides the data into overlapping blocks of cases and 

sampling the blocks randomly with replacement. Another tempting line of future work is 

to consider alternatives in the tree’s voting power, as the GBM use the “one tree one 

vote” system. Gaining ground alternatives include error diversity, variance-optimized and 

out-of-bag predictability-based voting systems. Such alternatives may yield 
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improvements in predictive (machine) learning techniques when applied to financial time 

series.   

C. Assessing the discriminatory accuracy  

Instead of analyzing the profitability of trading strategies based on the estimated 

probabilities, we will focus on predictability. In this way we eliminate the necessity of 

specifying an asset-pricing model, which is necessary for determining the economic 

source of trading profits. However, obtaining discriminatory accuracy in independent test 

samples does not guarantee a profitable trading strategy.    

The receiver operating characteristic (ROC) curve is a well-established method 

for summarizing performances of diagnostic tests (see, e.g., Hanley (1999); and Zhou, 

McClish, and Obuchowski (2002)). Lately, the ROC curve has been gaining more ground 

in evaluating machine learning algorithms (see, e.g., Provost, Fawcett, and Kohavi 

(1998); Bradley (1998); Weiss and Provost (2003); and Rodriguez and Rodriguez 

(2005)). One of the most important applications of the ROC curve analysis is to evaluate 

the ‘overall’ performance of learning classifiers. The term ‘overall’ is emphasized, since 

the interest is in the global picture of a test and not in the accuracy performance at a 

particular cut-off value.   

A ROC curve depicts the relationship of Sensitivity and 1 - Specificity of a 

learning classifier at various cut-off values used to distinguish population one cases (e.g., 

up-movements) from population two instances (e.g., down-movements). The points on a 

ROC curve are either joined by line segments (non-parametric approach) or smooth 

curves (parametric procedure).  
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The area under a ROC curve (AUC) is equal to the probability that a randomly 

selected observation from population one scores higher than a randomly selected 

observation from population two (Hanley and McNeil (1982)). This is true if and only if 

population one was codified with ones and population two with zeros, otherwise the 

reverse is true. Formally, the AUC can be expressed as: 

 1AUC = ( ) ( )
2

P y x P y x> + =                                                 (8) 

where y and x denote the classifier output (i.e. population one posterior probability) for a 

randomly selected observation from population one and two, correspondingly. A ranking 

probability equal to 1 and ½ would imply a perfect classifier and a random classifier, 

respectively.   

Both parametric and nonparametric approaches can be used to derive an AUC 

index of accuracy. In this article, the Mann-Whitney-U Statistic, a nonparametric 

approach, was chosen to obtain the AUC. The Mann-Whitney-U Statistic is given by: 

1 1

1AUC =  =
m n

ij
i j

Z
mn = =

⊕ ∑∑                                                  (9) 

where 1( ) ( )
2ij i j i jZ I y x I y x= > + = and ( )I • is an indicator function. The variables m and 

n are the total number of observations for population one and two, respectively.  

The AUC has a number of desired properties when compared to global accuracy 

(see, e.g., Bradley (1998)). However, an accurate estimate of AUC uncertainty is 

essential to avoid misleading inference. This uncertainty is usually summarized by 

standard errors. In this paper, we assess the AUC’s standard error with three non-
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parametric techniques. First, we use the Obuchowski and Lieber’s (1998) version of 

DeLong et al.’s (1988) method given by 

2 2

0 0 0 0( ) .
( 1) ( 1)

m n n m
ij ij

i j i j

Z Z
n m

Var
m m n n

= = = =

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
−⊕ −⊕⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣⊕ = +
− −

∑ ∑ ∑ ∑
⎦                           (10) 

Second, we employ re-sampling techniques. Re-sampling techniques are 

computer-intensive statistical tools for estimating the distribution of a parameter that in 

other ways would be difficult to obtain.4 The traditional bootstrap algorithm is: (1) draw a 

sample of size m with replacement from the observed sample of values from population 

one cases and a separate sample of size n with replacement from the observed sample of 

population two instances, (2) calculate the AUC, (3) repeat steps 1 and 2 thousand times 

to obtain a set of bootstrap replications, and (4) compute the variance of the set of 

bootstrap replications.   

To incorporate into the analysis possible dependences in tests results, we 

employed the Block Bootstrap (Künch (1989)). The Block bootstrap (hereafter Bb) is the 

best-known method for implementing the bootstrap with time series data. It consists of 

dividing the data into overlapping blocks of cases and sampling the blocks randomly with 

replacement. The steps for the Bb go as follows: Given a weekly dependent time series 

(1) choose block’s length l, (2) block one is 1{ ,..., },Ny y=y { ,..., },j j j ly y +=y block two 

is observations  and so forth, (3) create a bootstrap sample by 

concatenating blocks that are drawn at random with replacements from the set of blocks, 

(4) compute the AUC, (5) repeat steps 3 and 4 thousand times to obtain a set of bootstrap 

replications, and (6) calculate the variance of the set of bootstrap replications. 

1 1 1{ ,..., },j j jy y+ + + +=y l
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 In this paper we will determine the block’s length with a heuristic approach when 

establishing the 95% confidence interval for the AUC. In this conservative heuristic 

approach, we will search for the parameter that maximizes the difference between upper 

and lower bounds. In doing so, we are able to find a parameter that is large enough to 

capture the dependences, since it is expected that the confidence interval widens as the 

parameter is increased. However, a plateau region will eventually be encountered as 

larger parameter values are analyzed, because large values of block’s length will generate 

small variability in the re-sampled blocks. Hence, we will report the variance where the 

difference is maximized.  

II. Movements codification 

Regarding the dependent variable, four conditionals were evaluated and the class 

labels generated by each conditional were used as the response variable. In other words, 

for the CRSP index we have four 2-class classification problems. Figure 2 shows the 

visualization of the movement codification algorithm per conditional evaluated. 

Population one and two will be represented by the observations codified with ones and 

zeros, respectively. 

********************** 

Insert Figure 2 about here 

********************** 

The first conditional evaluated was set to obtain daily up-and-down movements. 

To codify the response variable we used a logical expression. Specifically, 

                             .   (11) (return Value){ 1;} { 0;}t t tif y else y> ← ←

The value of this conditional was fixed to zero to analyze the direction-of-change 

predictability. The second conditional tested was employed to obtain large positive price 
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changes. We used Equation (11) to codify the output. Nevertheless, the value was 

adjusted to obtain a population that analogously represented the right-tail of the 

distribution of returns. The value of the second conditional was tweaked to obtain a 

population represented by 20%, given by the complement of the accumulated probability 

of the distribution of returns.      

 The third conditional used was utilized from the yearning to study large negative 

price changes. The value of this conditional was modified to generate a population that is 

comparable to the left-tail of the distribution of returns. Thus, the value was calibrated to 

obtain a population with 20%, given by the accumulated probability of the distribution of 

returns. However, to properly monitor large negative price changes we must replace the 

“Greater than” operator in Equation (11) with the “Less than” operator.  

To assuage the need of analyzing movements relevant to option traders, who 

usually implement volatility trading strategies (e.g., strangles, strips and straps), we 

modeled volatility-like price changes. The logical expression used to obtain the fourth 

response variable is given by 

      (return < Value(3)  return > Value(2) ){ 1;} { 0;}t t tif y else y← ←t .      (12) 

Where denotes the logical operator OR, and Value(2) and (3) are given by those values 

obtained in the second and third conditional, respectively. The well-known asymmetry in 

the distribution in stock returns (see, e.g., Cheng, Hong, and Stein (2001) and references 

therein) will eventually force us to analyze asymmetric volatility-like movements, which 

are nonetheless useful for asymmetric option trading strategies, e.g., strips and straps. 

Regarding the set of explanatory variables, for any given time t, we used twenty-four 

return lags.  
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The virtual impossibility of control experimentation in economics and finance 

shows that care must be taken to avoid data snooping biases (Lo and MacKinlay (1990)) 

or model over-fitting (Bossaerts and Hillion (1999)). Indeed, conducting uncontrolled 

tests in the context of prediction entails that the estimated model, without tuning the 

model’s parameters contingent on the error provided by the test data, should provide 

good out-of-sample predictability to assuage data snooping effects or model over-fitting 

biases.  

Our out-of-sample predictability tests are based on a rolling window scheme. The 

fixed-size rolling window prunes the oldest observations at each update and recalibrates 

the estimated model. In the analysis, we fixed the window’s size to twelve years of daily 

data. This scheme usually forecasts one step-ahead at each up-date. However, to get 

unbiased accuracy measures’ estimates, it is necessary to run the estimated function in a 

large test sample. Consequently, we predicted the next one thousand and one 

observations with one step-ahead forecast and pruned the first thousand and one instances 

at each update. Clearly, this slight modification of the traditional rolling window scheme 

resembles a train-and-test procedure with multiple evaluation periods. Moreover, this 

strategy allows us to analyze whether or not predictable components have diminished 

over time. The empirical examinations use daily closing prices from July 2, 1962 to 

December 31, 2003.    

Although the use of daily data in empirical tests is a contentious issue owing to 

the fact that it spawns well-known biases (e.g., bid-ask spread, non-trading, and non-

synchronous price quotations), in recent years the price efficiency of the CRSP index has 

improved substantially. To illustrate, we performed a fixed-size rolling window analysis 
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of Lo and MacKinlay’s (1988) variance ratio test from 1962 to 2003. In the analysis, we 

fixed the window’s size to (approximate) twelve years of data, employed overlapping 

observations with aggregation ratio q of two, and measured weekly returns from 

Wednesday close to the following Wednesday close. Therefore, the first variance ratio 

test is estimated using data spanning from July 2, 1962 to July 5, 1974, the second using 

data from July 3, 1962 to July 8, 1974, and so forth.   Figures 3A-B display the variance 

ratios (first y-axis) and heteroscedasticity-robust statistics (second y-axis) for daily- and 

weekly-holding period returns, respectively. 

********************** 

Insert Figure 3 about here 

**********************        

Note that under the random walk hypothesis, the value of the variance ratio is one 

and the test statistic has a standard normal distribution (asymptotically). Figures 3A-B 

show that the stochastic behavior of daily-holding stock returns in the post-1987 era is 

very similar to the one of weekly-holding returns—i.e., the random walk hypothesis is 

generally not rejected. It is worth noting that three days after the Black Monday of 

October 1987 large-capitalization stocks became generally linearly unpredictable.  Thus, 

with post-1987 daily data, the biases associated with daily sampling are to some extent 

minimized whereas its virtue is maintained—i.e., large test samples.    

III. Empirical Results 

 This section is divided into two parts. Direction-of-change predictability is 

analyzed in Section III.A. Section III.B shows the large price movement predictability 

accuracy of the estimated nonparametric function approximation technique.     

A. Direction-of-change predictability 
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To answer whether or not linear correlatedness of price changes is a necessary 

condition to foresee stocks up-and-down movements, we applied the GBM technique 

described in Section I.B to CAP10’s data. The results of the rolling window analysis are 

shown in Table I.  

********************** 

Insert Table I about here 

********************** 

Table I illustrates that coin-toss classification may be rejected at the usual 

significance level solely for the first two subperiods. Unsurprisingly, these periods are 

characterized by high positive auto-correlation. For example, from 1974 to 1978 the 

variance ratio test with an aggregation ratio q of two, displayed in Figure 3A, implies that 

the first-order auto-correlation in daily returns was higher than 24 per cent. Moreover, the 

aforementioned tests entail that from 1978 to 1982 a linear relationship with the lagged 

price change was able to explain between 3.16 and 6.76% of the variation of the current 

price change.  

Evidently, the variance ratio’s downward trend after 1982 had an effect on the 

GBM’s ability to identify up-and-down movements. Particularly, during the period of the 

highest positive auto-correlation, the GBM was able to discriminate with 57.74% of 

accuracy positive from negative returns, and following 1978, its predictive power 

decreased to 54.78%. However, with post-1982 data, it mutated into a simple random 

classifier—past price changes did not provide useful information to foresee up-and-down 

movements! Hence, high degree of correlatedness of price changes is a necessary 

condition to obtain sign predictability.   
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Our finding of market timing ability under the presence of serially correlated 

returns is consistent with Allen and Karjalainen’s (1999) finding of usefulness of daily 

prices, at the presence of positive low-order serial correlation in S&P 500 returns, to 

identify periods to be in the S&P 500 index when returns are positive and volatility is low 

and out when the reverse is true. 

B. Large movement predictability 

The lack of autocorrelation observed in some stock prices may not necessarily 

imply unforecastability, as Granger (1981) illustrates in a time series context. Can data-

intensive techniques find a predictable behavior that the variance ratio, which is 

(approximately) a linear combination of autocorrelation coefficients, is not able to detect?  

When we applied the GBM to the data to analyze whether or not past returns 

provide incremental information to forecast large movements, we had to consider the 

time-varying definition of large movements. Specifically, we sought a return value which 

represented a large price change in the training and testing sample (or rolling window’s 

iteration). For example, the first train-and-test period spans from August 7, 1962 to July 

25, 1978. Thus, we searched in that period for the necessary value that enabled us to 

codify either absolute, or negative, or positive large price changes. Table II reports the 

overall accuracy of the Gradient Boosting Machine when forecasting large positive price 

changes. 

********************** 

Insert Table II about here 

********************** 

 In contrast to the results reported in Table I, the out-of-sample performance is 

satisfactory in all the time periods considered, even in periods where variance ratio tests 
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are not able to reject the random walk hypothesis. Although the highest accuracy is found 

in the first test period (August 9, 1974 to July 25, 1978), the predictable components have 

not diminished over time. Indeed, the external validity of the estimated model, in terms of 

discriminatory accuracy, is above 58 per cent after May 26, 1994, reaching to 61.65% 

from May 13, 1998 to May 7, 2002.        

********************** 

Insert Table III about here 

********************** 

Table III provides the out-of-sample results of the GBM when discriminating 

large negative price changes. Random classifications are rejected at the 5 per cent level in 

five evaluation periods. The second evaluation period from July 26, 1978 to July 12, 

1982 ratifies the importance of incorporating into the analysis possible dependence’s 

structures, since the AUC’s standard errors were underestimated when assuming 

independence in test results. Table IV reports the external validity of the GBM when 

predicting large absolute price changes.  

********************** 

Insert Table IV about here 

********************** 

 Table IV shows that for all evaluation periods, and as in Table II, in contrast to 

the direction-of-change predictability, random classifications are rejected at the 5 per cent 

of significance. However, the highest discriminatory accuracy, 69.14%, is found for the 

most recent data, rejecting, as with all large movements analyzed, the hypothesis that 

predictable components have been diminishing over time.5       
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IV. Conclusion 

This article extents the work of Fama (1965), Lo and MacKinlay (1988), Conrad and 

Kaul (1988, 1989), Jegadeesh (1990), and many others concerning the ability of past 

prices to foresee future returns. The prior work points out a size asymmetry in the auto-

correlation patterns—value-weighted portfolios of stocks with market values in the 

largest NYSE-AMEX quintile are not serially correlated.  

We document a new empirical characteristic of the data—large movement 

predictability without auto-correlation patterns—which poses a new challenge to those 

seeking to explain the predictability patterns of short-horizon stock returns. Specifically, 

past prices of both correlated and uncorrelated financial time series may be used to 

classify better than random either absolute, or negative, or positive large price changes 

from the rest of price movements. Additionally, we find that a direction-of-change 

predictability is attributable to the low-order serial correlation in stock returns.               

Although our results shed new light on how price changes can be predicted by 

past returns, and indicate that larger capitalization stocks’ returns are predictable, it is a 

more difficult task to determine precisely whether or not information is transmitted from 

larger to smaller stocks, and this will pursued in subsequent research.     
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Notes 

1. For a review of the literature on stock return predictability see Fama (1970, 1991).  

2. Studies by Apte and Hong (1995), Tsaih, Hsu, and Lai (1998), Zemke (1999), 

Chen, Leung, and Daouk (2003), Kim (2003), and Rodriguez and Rodriguez 

(2004) provide evidence in support of direction-of-change predictability in short-

horizon returns through classification techniques. 

3. Nevertheless, the empirical evidence is somewhat weaker when distinguishing 

large negative returns from the remainder of price changes.   

4. Re-sampling techniques are described in more technical detail in Hall (1992) and 

Davison and Hinkley (1997). Practical examples of confidence interval 

construction are given by Efron and Tibshirani (1993). Guide for choosing a 

bootstrap confidence method when using nonparametric or parametric simulation 

is given by Carpenter and Bithell (2000). 

5. Patently, we cannot report all the estimated committees (or ensembles) with either 

their relative importance measures or partial dependence plots for brevity’s sake. 

Nevertheless, they are available upon request to the authors. 
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Table I. Direction-of-change predictability: out-of-sample results 
For the (CRSP) portfolio of firms with market values in the largest NYSE-AMEX quintile, 
positive returns were codified with 1’s and the rest with 0’s. We test if the Gradient Boosting 
Machine is able to discriminate the cases codified with 1’s from the instances encoded with 0’s 
using past returns as explanatory variables. To assess the discriminatory accuracy, we employed 
the well-known ROC-curve summary index: the area under the ROC curve (AUC). The 
uncertainty of the AUC was summarized by three standard errors derived from: (1) DeLong et al. 
(1988)’s non-parametric formula, (2) Bootstrap Simulation, and (3) Moving Block Bootstrap 
simulation. The AUC is reported in the third column, and the standard errors, given in 
parenthesis, are reported in the next three columns. Under random (or coin-toss) classifications 
the AUC is not statistically different from 50%. Standard errors marked with asterisks indicate 
that the corresponding AUC is statistically different from 50 per cent. The dates of the training 
and testing periods are reported along with test sample discriminatory accuracy.       

            
     Standard Error (%)   

Training period Test sample AUC (%) DeLong et al. Bootstrap Moving Block
      

19620807-19740808 19740809-19780725 57.74 (1.80)* (1.82)* (1.82)* 
      

19660727-19780725 19780726-19820712 54.78 (1.82)* (1.90)* (1.98)* 
      

19700826-19820712 19820713-19860625 51.13 (1.82) (1.87) (1.90) 
      

19740814-19860625 19860626-19900611 53.59 (1.84) (1.87) (1.82) 
      

19780801-19900611 19900612-19940525 53.04 (1.82) (1.80) (1.94) 
      

19820719-19940525 19940526-19980512 51.88 (1.83) (1.87) (1.85) 
      

19860702-19980512 19980513-20020507 51.13 (1.82) (1.84) (1.92) 
      

19900618-20020507 20020508-20031231 46.59 (2.83) (2.88) (2.90) 
      

 
 
 
 
 
 
 
 
 
 
 
 
 



Table II. Large positive price changes predictability: out-of-sample results 
Large positive movements analogously represent the right-tail of the distribution of returns. For each train-and-test period, returns higher than the 
value shown in the third column were codified with 1’s and the rest with 0’s. We test if the Gradient Boosting Machine is able to discriminate the 
cases codified with 1’s from the instances encoded with 0’s using past returns as explanatory variables. Methodology for evaluating the out-of-
sample discriminatory accuracy of Gradient Boosting Machine as in Table I.  

              
      Standard Error (%)   

Training period Test sample Value AUC (%) DeLong et al. Bootstrap Moving Block
       

19620807-19740808 
 

19740809-19780725
 

0.51% 63.66 (1.97)* (2.00)* (2.03)* 
     

     

     

     

     

     

     

     

19660727-19780725 
 

19780726-19820712
 

0.62% 56.78 (2.06)* (2.11)* (2.07)* 

19700826-19820712 
 

19820713-19860625
 

0.67% 59.45 (2.14)* (2.13)* (2.21)* 

19740814-19860625 
 

19860626-19900611
 

0.71% 56.35 (2.31)* (2.30)* (2.60)* 

19780801-19900611 
 

19900612-19940525
 

0.67% 57.29 (2.56)* (2.59)* (2.88)* 

19820719-19940525 
 

19940526-19980512
 

0.65% 60.26 (2.22)* (2.22)* (2.31)* 

19860702-19980512 
 

19980513-20020507
 

0.68% 61.65 (1.98)* (1.93)* (2.06)* 

19900618-20020507 
 

20020508-20031231
 

0.69% 58.60 (3.13)* (3.18)* (3.20)* 
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Table III. Large negative price changes predictability: out-of-sample results 
Large negative movements analogously represent the left-tail of the distribution of returns. For each train-and-test period, returns lower than the 
values shown in the third column were codified with 1’s and the rest with 0’s. We test if the Gradient Boosting Machine is able to discriminate the 
cases codified with 1’s from the instances encoded with 0’s using past returns as explanatory variables. Methodology for evaluating the out-of-
sample discriminatory accuracy of Gradient Boosting Machine as in Table I.   

              
      Standard Error (%)   

Training period Test sample Value AUC (%) DeLong et al. Bootstrap Moving Block
       

19620807-19740808 
 

19740809-19780725
 

-0.48% 62.28 (2.01)* (2.09)* (2.16)* 
     

     

     

     

     

     

     

     

19660727-19780725 
 

19780726-19820712
 

-0.59% 54.51 (2.20)* (2.19)* (2.34) 

19700826-19820712 
 

19820713-19860625
 

-0.61% 52.29 (2.35) (2.38) (2.46) 

19740814-19860625 
 

19860626-19900611
 

-0.60% 59.76 (2.37)* (2.34)* (2.40)* 

19780801-19900611 
 

19900612-19940525
 

-0.57% 59.08 (2.44)* (2.38)* (2.54)* 

19820719-19940525 
 

19940526-19980512
 

-0.50% 59.73 (2.29)* (2.34)* (2.79)* 

19860702-19980512 
 

19980513-20020507
 

-0.55% 51.70 (2.03) (2.02) (2.12) 

19900618-20020507 
 

20020508-20031231
 

-0.60% 59.86 (2.86)* (2.86)* (3.60)* 

 

 



Table IV. Large absolute price changes predictability: out-of-sample results 
Large absolute movements are comparable to option volatility trading strategies, such as strips 
and straps. For each train-and-test period, returns lower than the value shown in Table III (third 
column) or higher than the value reported in Table II (third column) were codified with 1’s and 
the rest with 0’s. We test if the Gradient Boosting Machine is able to discriminate the cases 
codified with 1’s from the instances encoded with 0’s using past returns as explanatory variables. 
Methodology for evaluating the out-of-sample discriminatory accuracy of Gradient Boosting 
Machine as in Table I.  
 

            
     Standard Error (%)   

Training period Test sample AUC (%) DeLong et al. Bootstrap Moving Block
      

19620807-19740808 19740809-19780725 59.77 (1.78)* (1.77)* (2.12)* 
      

19660727-19780725 19780726-19820712 57.04 (1.81)* (1.82)* (1.98)* 
      

19700826-19820712 19820713-19860625 59.98 (1.84)* (1.93)* (2.30)* 
      

19740814-19860625 19860626-19900611 57.44 (1.88)* (1.88)* (2.57)* 
      

19780801-19900611 19900612-19940525 63.05 (1.92)* (2.00)* (2.58)* 
      

19820719-19940525 19940526-19980512 64.07 (1.80)* (1.74)* (2.05)* 
      

19860702-19980512 19980513-20020507 58.17 (1.80)* (1.77)* (2.12)* 
      

19900618-20020507 20020508-20031231 69.14 (2.62)* (2.68)* (3.25)* 
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Figure 1. Friedman’s (Stochastic) Gradient Boosting Machine Algorithm 
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Figure 2. Visualization of the movement codification per conditional evaluated.  
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Figure 3. CRSP index’s time-varying stochastic behavior 
 

 

 34


	Latest version: March 29, 2005

