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Abstract 

 
This paper extends the existing literature on empirical research in the field of sovereign debt. To the authors’ 
knowledge, only one study in the area of sovereign debt has used a variety of statistical methodologies to test 
the reliability of their predictions and to compare their performance against one another. However, those 
comparisons across models have been made in terms of different probability cutoff points and mean squared 
errors. Moreover, the issue of interpretability has not been addressed in terms of interactions among 
explanatory variables with their correspondent debt rescheduling threshold level. The areas under the 
Receiver Operating Characteristic (ROC) curves are used to compare the discrimination power of statistical 
models. This paper tests Logit, MARS, Tree-based and Neural Network models. Analyses of the relative 
importance of variables and deviance were done. All of the models rank the previous payment history as the 
most important explanatory variable.  
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1. Introduction 
 
 
The recent Argentinean default on its sovereign debt payments is one more piece of 

evidence that the intertemporal government budget constraint offers poor insights into the 

comprehension of government debt crises and defaults. Furthermore, to the authors’ 

knowledge, empirical studies in the area of sovereign debt have not yet derived easy to 
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follow rules to characterize the interactions among explanatory variables that give rise to a 

sovereign debt crisis.  

In a recent paper, Barney and Alse (2001) address the issues of reliability and 

comparability among competing models only in regard to their debt rescheduling predictive 

power. They provide a test sample comparative statistics for OLS, Logit, and Neural 

Networks under two criteria: classification error and accuracy. It is known that the 

classification error criterion relies on implicit assumptions that play havoc with comparing 

performances between models and that the tradeoff between sensitivity and specificity due 

to changes in the cutoff value could come from a random classifier (see, e.g., Hand, 1997). 

The accuracy criterion is only indicative of how close a model’s prediction is to the actual 

data – i.e. how good the approximation is. However, no information at all is extracted as to 

the discrimination power of a tested model. 

This paper evaluates and compares the discrimination power of various traditional 

and modern statistical methodologies for both the training and the test debt-related data 

samples. This is done by a pair-wise statistical comparison of the areas under the Receiver 

Operating Characteristic (ROC) curves. A ROC Curve displays the tradeoff between 

sensitivity and specificity as a function of the cutoff value. The area under the ROC Curve 

is equal to the probability that a randomly selected observation from the rescheduling 

population scores higher than a randomly selected observation from the non-rescheduling 

population.1   

                                                 
1 This is true when the rescheduling population is coded with ones and the non-rescheduling population with 
zeros, vice versa otherwise. 



The principal problem that the researcher faces is the specification of the 

relationship between the response variable, Y , and the explanatory factors  { }1,..., px x x= , 

in an equation like the following: 

      1( ,..., )pY f x x ε= +            (1) 

where ε  usually reflects the dependence of Y  on other variables different from .  The 

solution to the estimation of the function 

x

1( ,..., )pf x x is generated by: 
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Eq. (2) does not generate a unique solution (Friedman, 1994). There exists a set of 

functions that can interpolate the data, so the researcher must restrict the solutions in Eq. 

(2) to a subset of functions. These restrictions are based on considerations outside the 

database. In general, they are done with the election of the function approximation method 

because each one assumes a relationship between the explanatory factors and the response 

variable.    

The Logistic Regression (Logit) will produce accurate predictions if and only if the 

parameterized equation is similar to the true function – i.e., the boundary that separates the 

non-reschedulings from the debt reschedulings cases is linear. A Neural Network model, 

particularly a Multi-Layer Network, searches for a non-linear boundary in the explanatory 

factors space. Two of its known weaknesses are sensitivity to irrelevant variables and null 

degree of interpretability. Moreover, the only piece of information that can be extracted 

from a trained Neural Network is the Relative Importance Measure.  



The need to analyze debt reschedulings with methods both robust to irrelevant 

variables and with a high degree of interpretability prompted the use of Classification Trees 

(Breiman et al., 1984) and Multivariate Adaptive Regression Splines “MARS” (Friedman, 

1991) in addition to Logit and Neural Networks. These techniques (Classification Trees & 

MARS) have an automatic selection of relevant explanatory factors and interactions among 

them.  

Decision-tree models are used here to address the issue of how explanatory 

variables might interact with each other to give rise to a debt rescheduling vs. a non-

rescheduling outcome. Such trees provide a sequence of IF-THEN rules for debt 

rescheduling where explanatory variables could trigger it as soon as they stop satisfying an 

inequality. In order to come up with this sequence, a Tree-based model partitions the 

explanatory factors space into rectangle-like regions and fits a simple model at each 

terminal node via an estimation of a constant. A Relative Importance Measure for each one 

of the variables is also obtained for the Tree-based models used here.  

MARS algorithms tackle the main Classification Trees’ weakness: the discontinuity 

inherent in each node. This contribution will enhance the reliability if the true function that 

discriminates the non-reschedulings from the debt reschedulings cases is continuous. 

Interestingly, Sephton (2001) uses MARS models to predict American recessions and 

compares its performance to a Probit model’s only in terms of an accuracy criterion. He 

finds that the test sample evidence indicates that the MARS models in his paper are helpful, 

but not entirely accurate predictions of recessions.  



Galindo and Tamayo (2000) analyze the performance of Probit, k-Nearest-

Neighbors, Tree-based, and Neural Networks models to assess the credit risk of a mortgage 

loan portfolio. They find that the Tree-based models produce the most accurate results.  

The issue of interpretability of models for debt rescheduling is not addressed by 

Barney and Alse (2001). In this paper, the interpretability is addressed in the four models 

used here. Having this in mind, the decision to determine which method is better will be a 

function of both its discriminative and interpretation abilities.  

The paper is organized as follows. In section 2 the ROC curve concept and its 

applications are explained. Section 3 briefly discusses the methodologies and their results 

are presented. Section 4 contains the results from the comparison of the areas under the 

ROC curves derived from applying the methodologies in section 3 to approximate the 

function for debt rescheduling. Concluding remarks follow in section 5.           

 

2. Measuring and comparing the discrimination power of models: the    

    Area under the ROC curve 

Receiver Operating Characteristic (ROC) curves assess the ability of a method to 

discriminate between two populations. In this paper, the area under the ROC curve 

represents the probability of correctly ranking a random (debt rescheduling, non-

rescheduling) pair.2 This area exhibits a number of desirable properties when compared to 

overall accuracy in the evaluation of predictive (machine) learning algorithms (Bradley, 

1997). A ranking probability of one would simply indicate that the probability distributions 

                                                 
2 See Hamber (1975) and Hanley and McNeil (1982) for more details on the probabilistic meaning of the area 
under the ROC curve.   



of debt rescheduling and non-rescheduling did not overlap at all – i.e., there is no 

possibility of wrongly classifying a debt rescheduling nor a non-rescheduling outcome. As 

opposed to perfect discrimination, an area under the ROC curve equal to one half would 

mean that the model is not capable of distinguishing at all between classes – i.e., this occurs 

when there is a perfect overlap of probability distributions.3  

The ROC curve is generated by sweeping the cutoff point probability for non-

rescheduling from zero to one. The x-axis represents the difference between one and the 

ratio of correctly classified debt reschedulings to the total number of debt reschedulings. 

The y-axis represents the ratio of correctly classified non-reschedulings to the total number 

of non-reschedulings. The area under a ROC curve could vary from 0.5 (Random 

Classifier) to 1 (Perfect Classifier). Figure 1 illustrates a typical ROC curve.  

 

[Figure 1 About Here] 

 

Parametric and Non-Parametric procedures can be used to derive the area under the 

ROC curve.  The parametric procedures assume a probability distribution form for the two 

populations. Typically, the probability distribution is a ‘binormal’ one. The area under the 

ROC curve and its variance are obtained with Maximum Likelihood Estimation (see, e.g., 

Metz et al. 1998). On the other hand, a non-parametric procedure may assume a 

mathematical form of a distribution for the two populations to calculate the variance of the 

estimate. Usually, the exponential distribution is used. The area under the ROC curve is 

                                                 
3 See section 5.14 in the “Material docente de la Unidad de Bioestadística Clínica” to understand the 
implications on the ROC curve of the probability distributions’ overlap degree.  
 



obtained with the Mann-Whitney-U Statistic (see Lehman 1998 and Hanley and McNeil 

1982).   

For a wide range of distributions, choosing between parametric and non-parametric 

approaches should not be made on considerations of imprecision or bias of the estimates of 

the area under the ROC curve. The reason is because the bias/imprecision of the 

misspecification of the underlying distribution has been found to be very small (Hajian-

Tilaki et al., 1997). 

 In this research paper, a nonparametric approach was chosen because the Decision-

Tree, one of the function approximation algorithms employed here, forecasts with discrete 

values of probabilities. The quantity will depend on the number of terminal nodes, which 

was found to be small. To the authors’ knowledge, there is no implementation hitherto of a 

parametric procedure that obtains the area under the ROC curve and its variance under 

these conditions.4  

A ROC curve has three important applications: (1) to measure the discrimination 

power of a model by finding the area under the curve, (2) to compare the discrimination 

power between models and (3) to compare two probability cutoff points on the same curve.    

Application 2 is of interest here because numerically different areas under two ROC curves 

will not be a result of random sampling if their difference is statistically significant.5    

 

 

                                                 
4 Although the PROPROC Software developed by Metz from the Department of Radiology at the University 
of Chicago Medical Center obtains the area under the ROC curve under these conditions.   
5 See Hanley and McNeil (1983) to understand how to compare the areas under different ROC curves derived 
from the same data.  



3. Methodologies  

The annual data used here for the explanatory variables spanned the 1986-1994 period. 

Fifty-two middle-income countries from all around the world were sampled. The chosen 

countries were the same as those used by Barney and Alse (2001) with the exceptions of 

Portugal and Myanmar. The World Debt Tables (1996, 1991, 1990) and the World 

Development Indicators (2002) were the data sources.  

The data sample was randomly divided into a training sample (almost three quarters 

of the data sample) and a test sample. Roughly 42% (148/349) of the data in the training 

sample were observations of countries that rescheduled their debt payments. As for the test 

sample, approximately 41% (49/119) of the data were also reschedulings outcomes. The 

discrete dependent variable takes on 1 when there is debt rescheduling, 0 otherwise.   

All of the explanatory factors used by Barney and Alse (2001) were employed. All 

of them were normalized to a mean equal to zero and a standard deviation equal to one.6 

The notation for the variables is shown in Table 1. 

Table 1. Explanatory variables’ notation. 

            
EDT/GNP(%): the percentage of Total Debt Stock to Gross National Product 
TDS/XGS(%): the percentage of Total Debt Service to Exports of Gods and Services 
PCGNPG(%): the growth rate of the per capita Gross National Product  
RES/MGS(months): the ratio of International Reserves to Imports of Goods and Services 
EGR(%): the growth rate of Exports of Goods and Services   
IR(%): the Consumer Price Index growth rate   
MGS/GNP(%): the percentage of Imports of Goods and Services to Gross National Product 
PPH: the previous payment history or the lag of the dependent variable  

            

 

 

                                                 
 6 The mean and the standard deviation obtained from the training data were applied to normalize the test data. 



3.1 The Logistic Regression 
The Logit model arises from the desire to model posterior probabilities of the classes via 

linear functions. It relies on Maximum Likelihood Estimation (MLE) to find the model that 

most accurately approximates its outcomes to the actual data. Its weaknesses consist of 

assuming a functional form ex-ante and a probability distribution for the error term. The 

regression results along with its summary statistics are shown in Table 2.  

Table 2. Results of the Logit regression. 
        

  Coefficient Std. Error Z-Value 
(Intercept) -1.68 0.234 -7.19 
EDT/GNP(%) 1.72 0.470 3.66 
TDS/XGS(%) 0.30 0.175 1.71 
PCGNPG(%) 0.19 0.187 1.01 
RES/MGS(months) 0.10 0.183 0.56 
EGR(%) 0.01 0.178 0.06 
IR(%) 0.13 0.119 1.09 
MGS/GNP(%) 0.16 0.236 0.70 
PPH 3.37 0.335 10.07 
    
Log-likelihood -125.54   
Likelihood Ratio 224.66   
A.I.C. 269.08     
    

 

It can be seen from Table 2 that only the coefficients corresponding to the previous 

payment history and the ratio of total debt stock to GNP are significant and with the 

expected sign.7 The model yields a highly significant likelihood ratio statistic suggesting 

that the explanatory factors contain substantial explanatory power.    

                                                 
7 In a Logit regression, a 100% change in an explanatory variable ix , ceteris paribus, brings about a 

change in ( 1)100%i xeβ −
1

i

i

P
P−

 - i.e. the odds in favor of debt rescheduling.      



Due to the existence of correlation among the explanatory factors, there could be a 

factor statistically insignificant because of the presence of an irrelevant factor. However, 

this could be mitigated with a model selection strategy.  

A model selection strategy tries to find a subset of the explanatory factors that are 

sufficient for explaining the response variable.  In this article a backward subset selection 

was implemented. This was done by dropping the least significant coefficient and by 

refitting the model after. This was done repeatedly until a list from the most important to 

least important factor was obtained. Then explanatory factors were added one by one 

beginning with the most important and ending with the least important factor. The model 

was estimated every time a new factor was included. An analysis of deviance was done to 

decide which variables to exclude.8   The result of this strategy is shown in Table 3.  

Table 3.  Analysis of Deviance. 
          

Terms AIC Residual Dev. LRT p-value 
PPH 275.31 271.31   
EDT/GNP(%) 264.10 258.10 13.21 0.00 
TDS/XGS(%) 262.99 254.99 3.11 0.08 
PCGNPG(%) 262.94 252.94 2.05 0.15 
IR(%) 263.88 251.88 1.06 0.30 
MGS/GNP(%) 265.39 251.39 0.49 0.48 
RES/MGS(months) 267.09 251.09 0.31 0.58 
EGR(%) 269.08 251.08 0.00 0.95 
         
          
     

 

                                                 
8 The residual deviance of a fitted model is minus twice its log-likelihood and the Akaike Information 
Criterion (AIC) is the residual deviance plus twice the number of parameters to the number of observations 
ratio.  
 



In Table 3, the column labeled “Terms” lists explanatory factors in order of 

importance. The AIC acronym stands for Akaike Information Criterion while the LRT for 

Likelihood Ratio Test. Both measures are obtained when a “term” is added to the model. 

 It can be seen from the Table 3 that the Likelihood Ratio Test determines that two 

explanatory factors are enough to explain the phenomena at hand. In contrast, the AIC 

determines that four explanatory factors are enough to understand the sovereign debt 

rescheduling problem.  In other words, the Likelihood Ratio Test determines that the 

Previous Payment History and the Total Debt Stock to Gross National Product ratio are the 

relevant factors to understand the debt rescheduling phenomena. The Akaike Information 

Criterion, in addition to the aforementioned factors, indicates that the Total Debt Service to 

Exports of Goods and Services ratio and the growth rate of Gross National Product per 

capita must be included in the final model.  

To determine if the reduction in the explanatory factor space increases the 

predictive power, the prediction capabilities on the test sample are analyzed. The full model 

has the lowest classification error rate. Consequently, the model with all the explanatory 

factors was selected as the final Logit model.9      

In order to compare the actual data versus a model’s outcomes, performance 

matrices are obtained for both the training and test samples for a given cutoff value of 40 

%. Performance matrices for the final Logit model are shown in Table 4.  

 

                                                 
9 A ROC analysis was also carried out. The area under the ROC curve of the full model was not statistically 
superior to the area of the four-factor model at 90%. However, the full model had higher lower and upper 
confidence bounds on top of a lower mean squared error in the test sample.  



Table 4. Performance Matrices for the Logit model.   
             
  Predicted 0 Predicted 1    Predicted 0 Predicted 1 
       

Actual 0 177 24  Actual 0 55 15 
Actual 1 22 126  Actual 1 8 41 

Training Sample    Test Sample     
       

In section 4 the performance matrices of every single methodology will be compared 

against one another in terms of classification errors for both debt reschedulings and non-

reschedulings populations. 

 

3.2 Multivariate Adaptive Regression Splines (MARS) models 

 

MARS is a non-parametric procedure used to specify the functional form that best fits the 

model to the data. Such functional form consists of a sum of basis functions. They can be 

highly non-linear transformations of the explanatory variables. Nevertheless, the dependent 

variable is still a linear function of the basis functions.10 Eq. (3) provides an example of a 

typical MARS model with one single explanatory variable. 

 

2 3 3
1 1 2 3 4 1 5 2( ) 1 ( ) ( )f x x x x x k x kβ β β β β 3

+ += + + + + − + −                         (3) 

where and  are the knots or activation points for the explanatory variable that capture 

the shifts in the relationships between variables. The expression 

1k 2k

3
1( )x k +−  is equal to 

the 3
1(max(0, ))x k− . 

                                                 
10 For a simple explanation of the MARS methodology and its application to economic recessions see Sephton 
(2001)   



MARS finds the best model that fits the data by choosing the knots as well as the 

additive and interactive effects among explanatory variables that minimize the sum of 

squared errors.  

This is done by searching for the knot of each explanatory factor that minimizes the 

sum of squared errors. Then the explanatory factors along with their knot that minimized 

the sum of squared errors will be incorporated into the model. Finally, interactions among 

variables and knots already in the model are looked for. The ultimate selection of the model 

is based on the generalized-cross-validation criterion of Craven and Wahba (1979). The 

MARS models used here allow for one, two and three interaction levels (IL) among the 

explanatory variables.11 See Friedman (1991) for a detailed explanation of the estimation 

procedure.  

As for the M.A.R.S. estimation, up to thirty basis functions in the forward model-

building procedure were allowed. The cost per degree of freedom (i.e., the price of 

selecting a knot in a piecewise linear regression) was fixed to two and three in the 

backward deletion procedure for the additive and the interactive models, respectively. The 

results of the additive model (IL=1) are shown in Table 5. 

 

 

 

 

 

                                                 
11The computational algorithm used to solve those models was MARSTM -- Decision Support System -- by 
Salford Systems.   



Table 5. Results of MARS additive model. 

          
          
MARS Debt Reschedulings Estimates   
Linear GCV = 0.1116    
Cubic GCV = 0.1125    
Cost per degree of freedom = 2   
     
Explanatory variables  Coefficient Variable 
Constant   0.938  
Basis function 1 (BF1)  -0.653 1 if PPH = 0, 0 otherwise 
Basis function 4 (BF4)   -0.303     Max(0, 0.266-EDT/GDP(%)) 
          
     

 
Just like in the case of the Logit model, the two most important factors are the 

Previous Payment History and the percentage of Total Debt Stock to Gross National 

Product. Even though the interpretation derived from this estimation is different from the 

Logit’s, a country must have a good Previous Payment History and a Total Debt Stock to 

Gross National Product ratio lower that .266 (normalized) or 110.58% to reduce its 

rescheduling probabilities.  

 In order to see if there are interactions among the explanatory factors, a two-level 

interaction (IL=2) model was estimated. By limiting the interaction level to two the 

interpretation of the final model increases as opposed to higher level of interactions. The 

results of the two-level interactions are shown in Table 6.  

 

 

 

 

 



Table 6. Results of MARS (IL=2) model. 
          
          
MARS Debt Reschedulings Estimates   
Linear GCV = 0.1052    
Cubic GCV = 0.1074    
Cost per degree of freedom = 3   
     
Explanatory variables  Coefficient Variable 
Constant   0.598  
Basis Function 1 (BF1)   1 if PPH = 0, 0 otherwise 
Basis Function 4 (BF4)  -0.396 Max(0, 0.45-EDT/GDP(%))*BF1 
Basis Function 8 (BF8)  0.084 Max(0, 2.712-RES/MGS(months)) 
Basis Function 9 (BF9)  -0.163 BF1*BF8 
Basis Function 14 (BF14)   Max(0, PCGNPG(%)-0.738) 
Basis Function 16 (BF16)   0.106 Max(0, TDS/XGS(%)+1.789)*BF14 
          
     

 
 

The results from Table 6 indicate that the likelihood of a debt rescheduling 

decreases when there are a good previous payment history along with a low percentage of 

Total Debt Stock to Gross National Product combined with a good payment history with a 

low ratio of reserves to imports. On the contrary, the likelihood of a debt rescheduling 

increases when there are a low ratio of reserves to imports plus a high percentage of the 

total debt service to exports ratio with a high rate of Gross National Product per capita.  

 Higher-order products or interactions may increase the prediction power if the true 

function that determines the relationship between the explanatory factors and the response 

variable has higher-order products. The possibility of three way products or interactions 

was looked into, the results are shown in Table 7.  

 

 

 



 

Table 7. Results of MARS (IL=3) model. 
 

MARS Debt Reschedulings Estimates
Linear GCV=.1020
Cubic GCV=.1071
Cost per degree of freedom =3

Explanatory variables Coefficient Variable
Constant 0.966
Basis function 1 (BF1) 1 if PPH=0, 0 otherwise
Basis function 2 (BF2) 1 if PPH=1, 0 otherwise
Basis function 3 (BF3) 0.941 Max(0,.45-EDT/GNP(%))*BF1
Basis function 4 (BF4) 7.943 Max(0,EDT/GNP(%)-.45)*BF1
Basis function 5 (BF5) Max(0,RES/MGS(months)-1.644)*BF1
Basis function 6 (BF6) Max(0,1.644-RES/MGS(months))*BF1
Basis function 7 (BF7) -0.388 Max(0,EDT/GNP(%)+.246)*BF6
Basis function 8 (BF8) 0.549 Max(0,-.243-EDT/GNP(%))*BF6
Basis function 9 (BF9) -0.36 Max(0,RES/MGS(months)+1.229)*BF2
Basis function 10 (BF10) -0.332 Max(0, TDS/XGS(%)-.928)*BF9
Basis function 13 (BF13) 0.984 Max(0,-.005-IR(%))*BF9
Basis function 14 (BF14) 0.326 Max(0, TDS/XGS(%)+1.789)*BF5
Basis function 17 (BF17) -0.897 Max(0, MGS/GNP(%)+10.171)*BF4

Basis function 18 (BF18) 0.163 Max(0, TDS/XGS(%)+.883)*BF9

 
 It is more difficult to interpret the final MARS model with three-level of 

interactions than the MARS models with lower levels of interaction. The Relative 

Important Measure helps to determine which variables are more relevant to understanding 

the rescheduling phenomena. Figure 2 contains the relative importance of variables for the 

MARS models with one, two, and three variable interactions, respectively.12 It is worth 

mentioning that the previous payment history ended up being the most important 

explanatory variable for the three MARS models considered here. 

                                                 
12 Each number multiplied by a hundred indicates what happens to the explanatory power of the model when 
the corresponding explanatory factor is omitted. The higher the percentage number is, the more explanatory 
power the variable has.   



 

[Figure 2 About Here]   

 

The performance matrices with a cutoff value of 40% for each level of interaction 

are shown in Table 8. 

Table 8. Performance Matrices for MARS additive and interaction models. 

             
  Predicted 0 Predicted 1    Predicted 0 Predicted 1 

       

Actual 0 179 22  Actual 0 56 14 

Actual 1 24 124  Actual 1 9 40 

Training Sample    Test Sample     
  a) Performance Matrices for MARS (IL=1)  

             

  Predicted 0 Predicted 1    Predicted 0 Predicted 1 

       

Actual 0 179 22  Actual 0 56 14 

Actual 1 17 131  Actual 1 9 40 

Training Sample    Test Sample     

  b) Performance Matrices for MARS (IL=2)  

             

  Predicted 0 Predicted 1    Predicted 0 Predicted 1 

       

Actual 0 180 21  Actual 0 53 17 

Actual 1 15 133  Actual 1 16 33 

Training Sample    Test Sample     

  c) Performance Matrices for MARS (IL=3)  
 

It can be seen from Table 8 that as the level of interaction is incremented the 

performance in the training sample increases. However, this is not the case in the test 

sample where the additive and the two-level of interaction models are equally better than 

the three-level of interactions model, clearly indicating a sign of over-fitting.    

 



 

3.3 Tree-based models 

 

Tree-based models (Breiman et al., 1984) are powerful non-parametric methods that deliver 

accurate predictions and, most importantly, easy to interpret rules that characterize a 

phenomena. Decision-tree models are used here to address the issue of how explanatory 

variables interact with each other through a sequence of IF-THEN rules for debt 

rescheduling. Some explanatory variables will be located at different nodes of the tree and 

climbing down the right part of a tree is conditional on them not satisfying their 

inequality.13  

The impurity functions used here were the Gini and the information or cross entropy 

indices. Such impurity functions derive their names from the fact that it is practically 

impossible to make all observations from one class go right and the rest of the observations 

from the other class go left – i.e., there is no purity. In other words, the Tree-based models 

try to separate the rescheduling from the non-rescheduling population via a split.    

The procedure to generate a Tree-based model can be broken down into two stages. 

The first stage represents the growing of the tree. In this stage, the algorithm tries to find 

the split that maximizes the decrement in the impurity function in order to make the tree 

grow. This is done iteratively until a certain amount of observations is reached or until no 

further decrements in impurity functions are found.    

                                                 
13 Notice from the trees in Figures 3 and 4 that going right when climbing down the tree represents situations 
of debt being rescheduled. 



Due to the fact that the tree generated by the first stage will generally over-fit the 

training data, a second stage, the pruning, is needed. In this article, the Cost-Complexity 

Pruning was implemented. For a discussion of the different pruning methods see Esposito, 

Malerba, and Semeraro (1997). In summary, the pruning tries to find the best ratio derived 

from changes in the impurity function produced by changes in the number of terminal 

nodes (complexity parameter). Usually, the criterion that defines the best ratio is the error 

rate in an independent or test sample or the k-Fold Cross-Validation error rate.14

The Total Error Rate on the test sample as a function of the number of splits is 

shown in Table 9 for the Tree-based models with Gini and Information impurity functions. 

Table 9.  Tree-based model Total Error Rate in the test data as a function of the number of 

splits. 

      
Complexity Parameter Number of Splits Total Error Rate

0.7283 0 58.82% 
0.0186 1 19.33% 
0.0100 3 19.33% 

      
a) Gini Impurity Function   

      
Complexity Parameter Number of Splits Total Error Rate

0.7283 0 58.82% 
0.0170 1 19.33% 
0.0100 3 25.21% 

      
b) Information Impurity Function  

 

It can be seen from Table 9 that the number of splits for the estimated trees is small. 

Moreover, according to Table 9, the tree grown under the information impurity function, 
                                                 
14 The statistical software used to estimate the tree based models was R, available at http://www.r-project.org , 
under R-part package develop by Terry M. Therneau and Beth Atkinson, R-port by Brian Ripley. 
Unfortunately, such implementation does not provide a pruning code with cross-validation on the test data.  

http://www.r-project.org/


given a cutoff point, could increase its discrimination power in the test sample if it were 

pruned.     

For several reasons it was decided not to prune the tree grown under the information 

impurity function. First, if a tree is pruned there will be a bias on the expected error rate on 

a future database. Second, the tree is highly interpretable. Third, after performing a ROC 

analysis the tree with three splits had a statistically significant higher area under the ROC 

curve.  

The tree grown under the Gini impurity function is shown in Figure 3.   

 

[Figure 3 About Here] 

 

 In order to explain how a rescheduling situation occurs, the tree from above is read 

in the following way: 

Case a)  

 If PPH ≠ 0 then rescheduling. That is, there will always be rescheduling if there is a 

bad previous payment history. 

 

Case b) 

If PPH=0 and EDT/GNP (%) >= 69.9% and PCGNPG (%) >= 14.5% then 

rescheduling. That is, there will be rescheduling if the ratio of total debt stock to GNP is at 

least 69.94% and the per capita growth rate is at least 14.50% despite a good previous 

payment history.   



The Tree-based model grown with Information Impurity Function is shown in 

Figure 4.  

[Figure 4 About Here] 

 

The same number of conditional rules for rescheduling outcomes occurs again. In 

order to explain how a rescheduling outcome is brought about, the tree from above is read 

in the following way: 

 

Case a)  

 If PPH ≠ 0 then rescheduling. That is, there will be rescheduling if there is a bad 

previous payment history.  

 

Case b) 

If PPH=0 and EDT/GNP (%) >= 58.1% and RES/MGS (months) >= 4.55 then 

rescheduling. That is, there will be rescheduling if the ratio of total debt stock to GNP is at 

least 58.10% and the ratio of international reserves to imports is at least 4.55 months 

despite a good previous payment history.    

An analysis of the relative importance of the explanatory variables was done for 

each tree model. Such analysis determines which variables are the most important ones for 

the learning process that takes place in the training sample.15 Figure 5 illustrates it for each 

case. 

                                                 
15 This is done via surrogate splits. In other words, what would be the accumulated effect on the impurity 
function if the split were done with another explanatory factor? This procedure is repeated for every node. 



 

[Figure 5 About Here] 

 

It is worth mentioning that the most important explanatory factors are the Previous 

Payment History and the percentage of Total Debt Stock to Gross National Product for both 

tree models. Table 10 contains the performance matrices for both tree models in the 

training and test sample.  

Table 10. Performance Matrices for the Tree-based models. 
             

  Predicted 0 Predicted 1    Predicted 0 Predicted 1 

       

Actual 0 177 24  Actual 0 56 14 

Actual 1 17 131  Actual 1 9 40 

Training Sample    Test Sample     

a) Performance matrices for the tree-based model (Gini)   

             

  Predicted 0 Predicted 1    Predicted 0 Predicted 1 

       

Actual 0 175 26  Actual 0 48 22 

Actual 1 16 132  Actual 1 8 41 

Training Sample    Test Sample     

b) Performance matrices for the tree-based model (Information)   

 

The Tree-based models have a very similar performance in the training data. The 

only difference comes from the ability to predict the non-rescheduling cases in the test data, 

where the tree model grown with the Gini impurity function works better.      

 

3.4 Neural Networks models 

 



In this paper a Neural Network with eight inputs, eight nodes and one hidden layer (a 8-8-1 

Neural Network) ended up being the one that delivered the lowest mean squared error 

(MSE) in the test sample. Different Neural Network’s architectures were also experimented 

with and did not deliver any significant improvement in terms of the test sample MSE. The 

logistic function was used in the hidden layer as well as in the output node. Such function 

only produces values between zero and one. A range for output between zero and one is 

needed in order to have probabilistic values.16  

In the optimization process an early stop criterion was employed because of the 

bias-variance tradeoff shown in the Figure 6.  

 

[Figure 6 About Here] 

 

It can be seen from Figure 6 that the MSE decreases in the training data as the 

number of epochs (iterations) increases. Exactly the opposite occurs in the test sample as 

soon as the minimum is found. The MSE increases because of the bias-variance tradeoff or 

process over-fitting. In order to select the best neural network architecture, the 

performances on the test sample were compared when the minimum MSE in the test sample 

was found.  

The relative importance measures for each explanatory factor in the estimated 

Neural Network model are shown in Figure 7.  

 

                                                 
16 The neural networks toolbox provided by MATLABTM was used to run the 8-8-1 Neural Network. A 
variable learning rate optimization algorithm was employed instead of the slower and more common 
Levenberg-Marquardt (LM). 



[Figure 7 About Here] 

 

As can be seen in Figure 7 the most important variable is the Previous Payment 

History, the rest of the variables play roughly the same insignificant role in understanding 

the problem at hand. Table 11 shows the performances matrices for both training and test 

sample with a cutoff value of 40%. 

 

Table 11. Performance Matrices for the Neural Network model. 

             

  Predicted 0 Predicted 1    Predicted 0 Predicted 1 

       

Actual 0 179 22  Actual 0 56 14 

Actual 1 16 132  Actual 1 9 40 

Training Sample    Test Sample     

       
 

4. Comparing the areas under the ROC curves derived from the  

    methodologies used above 

 

The classification error provides a way of comparing the performance of methodologies for 

a single probability cutoff point. Table 12 contains such numbers for each methodology 

explained above.   

Table 12. Classification Error Measures. 

          
  Cutoff value = 0.40  
 Training Sample   Test Sample   

Method Non-ReSCE ResCE Non-ReSCE ResCE 
Logit 0.119 0.149 0.214 0.163 
MARS (IL=1) 0.109 0.162 0.200 0.184 



MARS (IL=2) 0.109 0.115 0.200 0.184 
MARS (IL=3) 0.104 0.101 0.243 0.327 
Tree (Function = Gini) 0.119 0.115 0.200 0.184 
Tree (Function = Information) 0.129 0.108 0.314 0.163 
Neural Network 0.109 0.108 0.200 0.184 
          
     

 

It can be seen from Table 12 that if the losses from misclassifying a debt 

rescheduling are greater than those from misclassifying a non-rescheduling, then the tree 

with Information impurity function and the Logit model will be the models to consider as a 

consequence of having the lowest (16.30%) classification error for reschedulings.17  

However, the classification error does not tell us anything in regard to the 

discrimination power of the methodologies for any other cutoff point. A ROC curve, as 

explained before, sweeps the cutoff point from zero to one. The area under it is indeed a 

measure of the overall discrimination power of a methodology. For visualization purposes, 

Figure 8 shows the ROC curves for the Logit and Gini index Tree-based models. 

 

[Figure 8 About Here] 

 

The drawback of analyzing ROC curves by just a glance is the fact that two 

different ROC curves may have the same area under it. Table 13 presents the area under the 

ROC curve along with its 95% confidence interval and a common accuracy measure for 

each methodology used above. 

                                                 
17 The goal for any function approximation method is to perform better in the test sample (to be able to 

generalize) by not over-fitting the training data.  

  



 

 

 

 

Table 13. Areas under ROC curves and accuracy measures. 
            
    Training Sample   Test Sample  

Method Specification MSE ROC Area MSE ROC Area 
Logit Full model 0.106 0.881 ± 0.0397 0.143 0.857 ± 0.0728 
MARS (IL=1) IL =1 0.108 0.892 ± 0.0374 0.149 0.847 ± 0.0743 
MARS (IL=2) IL = 2 0.097 0.912 ± 0.0335 0.161 0.814 ± 0.0804 
MARS (IL=3) IL = 3 0.083 0.924 ± 0.0321 0.200 0.788 ± 0.0833 
Neural Network architecture (8-8-1) 0.097 0.914 ± 0.0335 0.149 0.847 ± 0.0720 
Tree-based model  Impurity Function = Gini 0.102 0.898 ± 0.0357 0.157 0.836 ± 0.0753 
Tree-based model  Impurity Function = Information 0.102 0.905 ± 0.0337 0.190 0.817 ± 0.0795 
      

 

A model that it is able to generalize is looked for. In other words, in the presence of 

an independent database this particular model will be able to make accurate and precise 

predictions. To determine which model is better or preferable, the selection must be made 

in terms of the discrimination and accuracy power on the test data.     

The discrimination power and accuracy of the estimated models diminish in the test 

sample, being the Logit model the most consistent in terms of discrimination power and 

accuracy while the MARS (IL=3) the most inconsistent of all.    

The critical ratio z test is used to determine whether two areas are statistically 

different from one another or not.18A critical ratio z equal to 1.29—i.e., one out of roughly 

10 samples produces different areas due to random sampling—is considered enough to 

establish a statistical difference between the discrimination powers of two methodologies 

                                                 
18 See Hanley and McNeil (1983) to find out how to calculate such critical ratio. 



being compared against each other. Table 14 shows the resulting preferences between 

models derived from the ratio numbers for the training sample.  A matrix of preferences 

between models is read in the following way: the model in a row is more preferred (MP) or 

equally preferred (EP) or less preferred (LP) than the model in a column. 

Table 14. Matrix of preferences between models for the training sample. 

                
Method Logit MARS (IL=1) MARS (IL=2) MARS (IL=3) Tree(Function = Gini) Tree(Function = Information) Neural Network

Logit NA EP LP LP EP LP LP 
MARS (IL=1)  NA LP LP LP LP EP 
MARS (IL=2)   NA LP EP EP EP 
MARS (IL=3)    NA MP MP MP 
Tree (Function = Gini)     NA EP EP 
Tree (Function = Information)      NA EP 
Neural Network             NA 
                
        

 

 

In the training sample, the MARS model with three-way interactions is more 

preferred than the other methodologies employed in this investigation. However, it is 

necessary to see if this result is due to over-training. Consequently, the same analysis on the 

test sample was performed. The results are shown in Table 15.  

Table 15. Matrix of preferences between models for the test sample. 

                
Method Logit MARS (IL=1) MARS (IL=2) MARS (IL=3) Tree(Function = Gini) Tree(Function = Information) Neural Network

Logit NA EP EP MP EP EP EP 
MARS (IL=1)  NA EP MP EP EP EP 
MARS (IL=2)   NA MP EP EP LP 
MARS (IL=3)    NA LP LP LP 
Tree (Function = Gini)     NA EP EP 
Tree (Function = Information)      NA EP 
Neural Network             NA 
                
        



 

The MARS (IL=3) model clearly underperforms when compared to the rest of the 

methodologies in the test sample. Consequently, from the third row in Table 15, it can be 

said that the MARS model with two-variable interactions is equally preferred than the tree 

grown under the Information impurity function. This finding is important because it 

contradicts what the MSE criterion says. Moreover, according to the last column of Table 

15, the Neural Network is equally preferred to the Logit, MARS additive model and trees 

models. For someone that had interpretation needs, the Tree-based models and the MARS 

additive model would be preferred to the Neural Network.  

Barney and Alse (2001) find that their models are equally reliable. According to 

Table 15, only seven out of twenty-one comparisons between models indicate something 

else other than equal reliability of models. In fact, six of them occur because of the over-

parameterized MARS (IL=3) model. The other one is due to the Neural Network model 

outperforming the MARS (IL=2) model.      

  

5. Conclusions 

 

To the authors’ knowledge, only one study in the area of sovereign debt had used a variety 

of statistical methodologies to test the reliability of their predictions and to compare their 

performance against one another. However, those comparisons across models had been 

made only in terms of different probability cutoff points and mean squared errors. 

Moreover, the issue of interpretability of models for debt rescheduling had not been 



addressed in terms of interactions among explanatory variables with their correspondent 

debt rescheduling threshold level. This paper tackled these two issues and provided basis 

functions and easy to follow decision rules to distinguish debt rescheduling from non-

rescheduling outcomes.  

First, this paper evaluated and compared the discrimination power of various 

traditional and modern statistical methodologies for both the training and the test debt-

related data samples. This was done by a pair-wise statistical comparison of the areas under 

the Receiver Operating Characteristic (ROC) curves. Logit, Neural Networks, MARS 

(Multivariate Adaptive Regression Splines), and Tree-based models were the function 

approximation algorithms used here.  

 

In relation to the predictive power of the models, fourteen out of twenty-one 

(66.66%) cases indicated equal reliability of models when compared with each other. This 

finding is in line with what was found in Barney and Alse (2001) who rely on comparing 

mean squared errors across models. However, the MSE criterion sometimes could be 

misleading as to what model to use. A measure like the area under the ROC provides an 

indicator to assess and compare the discrimination power of models, something more 

desirable to have than a simple accuracy measure for understanding and predicting 

sovereign debt rescheduling. Moreover, the finding that the Neural Network was not more 

reliable than the MARS additive and Tree-based models makes a good case to use the latter 

two methodologies in order to come to grips with sovereign debt rescheduling.  

Second, this paper did an analysis of deviance for the Logit model in order to find 

out which variables were more important than others regarding sovereign debt 



rescheduling. Along the same line of inquiry, an analysis of the relative importance of the 

explanatory variables was done for the Neural Network, MARS, and Tree-based models. 

All of the models ranked the previous payment history as the most important explanatory 

variable for the macroeconomic phenomena at hand. Future research should look into the 

implications of defining sovereign debt rescheduling in a different way – i.e., there is 

sovereign debt rescheduling this period if and only if there is rescheduling this period and 

there was no rescheduling during the previous period. Also, future research should look 

into ways of building up a good sovereign credit history. Furthermore, a model should be 

analyzed within the framework of partial areas under ROC curves to determine if it is more 

preferred than any other.  

The findings of this paper will allow researchers, policy makers and financial 

analysts to decide, when confronted with equally preferred models for the test sample, 

which model to rely on based on the their needs of interpretation.      
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Table 1. Explanatory variables’ notation. 

EDT/GNP(%): the percentage of Total Debt Stock to Gross National Product
TDS/XGS(%): the percentage of Total Debt Service to Exports of Goods and Services
PCGNPG(%):the growth rate of the per capita Gross National Product
RES/MGS(months): the ratio of International Reserves to Imports of Goods and Services
EGR(%): the growth rate of Exports of Goods and Services
IR(%): the CPI growth rate
MGS/GNP(%): the percentage of Imports of Goods and Services to Gross National Product
PPH: the previous payment history or the lag of the dependent variable

 
 

 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Results of the Logit regression. 
 

Coefficient Std. Error Z-Value
(Intercept) -1.68 0.234 -7.19
EDT/GNP(%) 1.72 0.470 3.66
TDS/XGS(%) 0.30 0.175 1.71
PCGNPG(%) 0.19 0.187 1.01
RES/MGS(months) 0.10 0.183 0.56
EGR(%) 0.01 0.178 0.06
IR(%) 0.13 0.119 1.09
MGS/GNP(%) 0.16 0.236 0.70
PPH 3.37 0.335 10.07

Log-likelihood -125.54
Likelihood Ratio 224.66
A.I.C. 269.08

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.  Analysis of Deviance. 

Terms AIC Residual Dev. LRT P-Value
PPH 275.31 271.31
EDT/GNP(%) 264.10 258.10 13.21 2.79E-04
TDS/XGS(%) 262.99 254.99 3.11 7.80E-02
PCGNPG(%) 262.94 252.94 2.05 1.53E-01
IR(%) 263.88 251.88 1.06 3.04E-01
MGS/GNP(%) 265.39 251.39 0.49 4.84E-01
RES/MGS(months) 267.09 251.09 0.30 5.80E-01
EGR(%) 269.08 251.08 0.01 9.51E-01

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Performance Matrices for the Logit model.   

P redic ted 0 P redic ted 1 P redic ted 0 P redic ted 1

A c tual 0 177 24 A c tual 0 55 15
A c tual 1 22 126 A c tual 1 8 41
Train ing Sample Tes t Sample

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 5. Results of MARS additive model. 

MARS Debt Reschedulings Estimates
Linear GCV=.1116
Cubic GCV=.1125
Cost per degree of freedom =2

Explanatory variables Coefficient Variable
Constant 0.938
Basis function 1 (BF1) -0.653 1 if PPH=0, 0 otherwise
Basis function 4 (BF4) -0.303 Max(0,.266-EDT/GNP(%))

 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6. Results of MARS (IL=2) model. 
 

MARS Debt Reschedulings Estimates
Linear GCV=.1052
Cubic GCV=.1074
Cost per degree of freedom =3

Explanatory variables Coefficient Variable
Constant 0.598
Basis function 1 (BF1) 1 if PPH=0, 0 otherwise
Basis function 4 (BF4) -0.396 Max(0,.45-EDT/GNP(%))*BF1
Basis function 8 (BF8) 0.084 Max(0,2.712-RES/MGS(months))

Basis function 9 (BF9) -0.163 BF1*BF8
Basis function 14 (BF14) Max(0, PCGNPG(%)-.738)
Basis function 16 (BF16) 0.106 Max(0, TDS/XGS(%)+1.789)*BF14

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 7. Results of MARS (IL=3) model. 

 



MARS Debt Reschedulings Estimates
Linear GCV=.1020
Cubic GCV=.1071
Cost per degree of freedom =3

Explanatory variables Coefficient Variable
Constant 0.966
Basis function 1 (BF1) 1 if PPH=0, 0 otherwise
Basis function 2 (BF2) 1 if PPH=1, 0 otherwise
Basis function 3 (BF3) 0.941 Max(0,.45-EDT/GNP(%))*BF1
Basis function 4 (BF4) 7.943 Max(0,EDT/GNP(%)-.45)*BF1
Basis function 5 (BF5) Max(0,RES/MGS(months)-1.644)*BF1
Basis function 6 (BF6) Max(0,1.644-RES/MGS(months))*BF1
Basis function 7 (BF7) -0.388 Max(0,EDT/GNP(%)+.246)*BF6
Basis function 8 (BF8) 0.549 Max(0,-.243-EDT/GNP(%))*BF6
Basis function 9 (BF9) -0.36 Max(0,RES/MGS(months)+1.229)*BF2
Basis function 10 (BF10) -0.332 Max(0, TDS/XGS(%)-.928)*BF9
Basis function 13 (BF13) 0.984 Max(0,-.005-IR(%))*BF9
Basis function 14 (BF14) 0.326 Max(0, TDS/XGS(%)+1.789)*BF5
Basis function 17 (BF17) -0.897 Max(0, MGS/GNP(%)+10.171)*BF4

Basis function 18 (BF18) 0.163 Max(0, TDS/XGS(%)+.883)*BF9

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8. Performance Matrices for MARS additive and interaction models. 



Predicted 0 Predicted 1 Predicted 0 Predicted 1

Actual 0 179 22 Actual 0 56 14
Actual 1 24 124 Actual 1 9 40

Training Sample Test Sample

a) Performance Matrices  for MARS (IL=1)

Predicted 0 Predicted 1 Predicted 0 Predicted 1

Actual 0 179 22 Actual 0 56 14
Actual 1 17 131 Actual 1 9 40

Training Sample Test Sample

b) Performance M atrices  for MARS (IL=2)

Predicted 0 Predicted 1 Predicted 0 Predicted 1

Actual 0 180 21 Actual 0 53 17
Actual 1 15 133 Actual 1 16 33

Training Sample Test Sample

c) Performance Matrices  for MARS (IL=3)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 9.  Tree-based model Total Error Rate in the test data as a function of the number of 

splits. 

Complex ity  Parameter Number of Splits Total Error Rate
0.72839 0 58.82%
0.01867 1 19.33%
0.01000 3 19.33%

a) Gini Impurity  Function

Complex ity  Parameter Number of Splits Total Error Rate
0.728385 0 58.82%
0.017077 1 19.33%
0.010000 3 25.21%

a) Information Impurity  Function  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Table 10. Performance Matrices for the Tree-based models. 
Predic ted 0 Predic ted 1 Predic ted 0 Predic ted 1

Actual 0 177 24 Actual 0 56 14
Actual 1 17 131 Actual 1 9 40

Training Sample Tes t Sample

a) Perfo rmance M atrices  fo r the tree model (Gin i)

Predic ted 0 Predic ted 1 Predic ted 0 Predic ted 1

Actual 0 175 26 Actual 0 48 22
Actual 1 16 132 Actual 1 8 41

Training Sample Tes t Sample

b) Perfo rmance M atrices  fo r the tree model (In fo rmation)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Table 11. Performance Matrices for the Neural Network model. 

P redic ted 0 P redic ted 1 P redic ted 0 P redic ted 1

A c tual 0 179 22 A c tual 0 56 14
A c tual 1 16 132 A c tual 1 9 40

Training Sample Tes t Sample

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Table 12. Classification Error Measures. 

Cutoff Value = 40%
Training Sample Test Sample

Method Non-ResCE ResCE Non-ResCE ResCE
Logit 0.119 0.149 0.214 0.163
MARS(IL=1) 0.109 0.162 0.200 0.184
MARS(IL=2) 0.109 0.115 0.200 0.184
MARS(IL=3) 0.104 0.101 0.243 0.327
Tree( Function=Gini) 0.119 0.115 0.200 0.184
Tree( Function=Information) 0.129 0.108 0.314 0.163
Neural Network 0.109 0.108 0.200 0.184

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Table 13. Areas under ROC curves and accuracy measures. 
 

Training Sample Test Sample
Method Specification MSE ROC Area MSE ROC Area

Logit Full Model 0.106 0.881 ±. 0395 0.143 0.857 ± .0728
MARS IL=1 0.108 0.892 ± .0374 0.149 0.847 ± .0743
MARS IL=2 0.097 0.912 ± .0335 0.161 0.814 ± .0804
MARS IL=3 0.083 0.924 ± .0321 0.200 0.788 ± .0833
Neural Network architecture(8-8-1) 0.097 0.914 ± .0335 0.149 0.847 ± .0720
Tree model Impurity function=Gini 0.102 0.898 ± .0357 0.157 0.836 ± .0753

Tree model Impurity function=Information 0.102 0.905 ± .0337 0.190 0.817 ± .0795

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



 
 

Table 14. Matrix of preferences between models for the training sample. 

Method Logit MARS(IL=1) MARS(IL=2) MARS(IL=3) Tree(Function=Gini) Tree(Function=Information) Neural Network
Logit NA EP LP LP EP LP LP
MARS(IL=1) NA LP LP LP LP EP
MARS(IL=2) NA LP EP EP EP
MARS(IL=3) NA MP MP MP
Tree(Function=Gini) NA EP EP
Tree(Function=Information) NA EP
Neural Network NA

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 15. Matrix of preferences between models for the test sample. 

 

Method Logit MARS(IL=1) MARS(IL=2) MARS(IL=3) Tree(Function=Gini) Tree(Function=Information) Neural Network
Logit NA EP EP MP EP EP EP
MARS(IL=1) NA EP MP EP EP EP
MARS(IL=2) NA MP EP EP LP
MARS(IL=3) NA LP LP LP
Tree(Function=Gini) NA EP EP
Tree(Function=Information) NA EP
Neural Network NA

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Figure 1. The Receiver Operating Characteristic curve. 
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Figure 2. Relative Importance Measures for MARS models.   

a) Relative Importance Mesure for MARS (IL=1)

c) Relative Importance Mesure for MARS (IL=3)

b) Relative Importance Mesure for MARS (IL=2)
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Figure 3. Tree model grown under the Gini Impurity Function. 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Figure 4. Tree model grown under the Information Impurity Function. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

Figure 5. Relative Importance Measure for the Tree-based models.  

 

a) Relative Importance Measure for the tree model with b) Relative Importance Measure for the tree model
Gini impurity function with Information impurity function
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Figure 6. The bias-variance tradeoff.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure 7. Relative Importance Measure for the Neural Network model. 
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Figure 8. ROC curves for the Logit and the Tree-based model grown under the Gini impurity 

function in the Test Sample.  
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