
Predicting stock market indices movements 

Pedro N. Rodriguez1 & Arnulfo Rodriguez2 

1Department of Statistics and Operations Research II, Universidad 
Complutense de Madrid, Spain.  
2Department of Economics, University of Texas at Austin, USA.  

Abstract 

This paper examines the extent to which the daily movements of three large 
emerging markets stock indices are predictable. Lagged technical indicators are 
used as explanatory variables. In the analysis we employed seven classification 
techniques and assessed the discriminatory power of the classifiers through the 
area under the receiver operating characteristic (ROC) curve. The results show 
that the daily movements of the three indices are better predictable than random. 
After taking into account the bias induced by non-synchronous price quotations, 
a trading system with break-even costs is simulated. The non-random classifiers 
yield returns above those of both random walk and contrarian investment 
strategies. No inefficiency is found due to the fact that relatively low break-even 
transaction costs are enough to eliminate the sources of trading profits.        
Keywords: Stock indices movements, Data mining, ROC analysis.  

1 Introduction 

Predicting assets returns is a subject that attracts researchers from diverse areas 
of investigation. Recently, a new line of research has emerged and switched the 
paradigm from analysing the predictability of assets returns to analysing the 
predictability of the direction of assets returns.  
     The demand for trading stock market indices has quickly grown in developing 
and emerging markets. Given this context, assessing the predictive power of a 
technique forecasting the direction of a stock index is an important objective. 
Success or error rates are perhaps the most popular methods to quantify the 
discriminatory power of a technique. It is known that the classification error 
criterion relies on implicit assumptions that play havoc with comparing 
performances both across models and within a model itself (Hand [1]). 



     Advances in statistics, machine learning, pattern recognition and artificial 
intelligence, etc. have contributed to delivering robust evaluation and 
classification techniques. One example is the area under the receiver operating 
characteristic (ROC) curve (AUC) that has been widely used to assess the 
discriminatory power of a classifier in medical diagnosis and imaging (Hanley 
and McNeil [2], Metz et al. [3], Zhou et al. [4]). The exhibition of a number of 
desirable properties by the AUC in contrast to the overall accuracy’s explains its 
ground gaining (Bradley [5]). 
     Classification techniques that are robust to irrelevant explanatory variables 
and with high degrees of interpretability and predictability have been developed. 
The election of a technique is non-trivial due to the fact that the characteristics of 
the database are not known a priori. Consequently, decisions should be based on 
the needs of interpretation and/or prediction with computational performance 
taken into account. We test the extent to which the direction of several stock 
indices can be forecasted by using lagged technical indicators as explanatory 
variables (see Section 3 for details).  
     This article complements the existent literature in several ways. First, in 
addition to Neural Networks (Ripley [6]) and Logit models (Hastie et al. [7]), we 
apply recent machine learning algorithms and statistical techniques such as 
PolyClass (Stone et al. [8]), Random Forest (Breiman [9]), Gradient Boosting 
Machine (Friedman [10]) and Tree-based models (Breiman et al. [11], Breiman 
[12]) to the stock index movement phenomena. Second, we assess the 
discrimination/prediction power of the classifiers via the area under the ROC 
curve. 
     This paper is organised as follows. In Section 2, an empirical review is given. 
Section 3 briefly discusses the data sets, the classification techniques employed 
and ROC curves. Section 4 contains the out-of-sample results. Section 5 
describes the trading simulation. Concluding remarks follow in section 6.     
                            

2 Empirical Review 

The empirical literature on returns predictability testing can be categorised 
according to two methodological approaches. The first branch tests the 
predictability of assets returns. A substantial literature in this area has been 
accumulated up until now and its review is beyond the scope of this article. See 
Fama [13], Fama [14] and Campbell et al. [15] for complete reviews on the 
predictability of assets returns.   
  The second group of studies analyses the predictability of the direction of  
assets returns. The basic premise is that the direction of future returns has a 
direct implication on trading strategies and assets allocation.  
     Tsaih et al. [16] model the S&P 500 Stock Index Futures via a hybrid 
artificial intelligence system. Such hybrid system integrates a rule-based system 
and neural networks. Their analysis uses dichotomised technical indicators as 
explanatory variables. They show, at one cut-off value, that the hybrid classifier 
is able to discriminate an up movement from a down movement. Then they 



integrate it into a trading system that outperforms the buy-and-hold investment 
strategy.      

Zemke [17] compares the ability to forecast up-down movements at the 
Warsaw Stock Exchange among four Machine Learning techniques. He tests 
neural networks, k-nearest neighbour, naïve Bayesian classifier and Genetic 
Algorithm with lagged returns as explanatory variables. The k-nearest neighbour 
produces the best results and yields returns above index growth after being 
incorporated into a trading system  
     Leung et al. [18] compare the forecasting performance and investment returns 
of classification and level estimation models. Their result suggests that the 
classification models outperform the level estimation models in both tasks. By 
using a monthly database with macroeconomic inputs, they analyse the S&P500, 
FTSE 100 and Nikkei 225 stock indices. This study is the first one that attempts 
to use class probabilities in order to develop a multiple threshold trading 
strategy.     
     Fernandez-Rodriguez et al. [19] analyse the profitability of technical trading 
rules at the Spanish Stock Exchange. They implement a multi-layer neural 
network with lagged returns as inputs. The estimated neural network predicts 
better than a random walk directional forecast at one cut-off value.   
     Kim [20] employs Support Vector Machines to forecast the direction of the 
Korea Composite Stock Price Index. He utilizes technical indicators as 
explanatory variables. His results indicate that support vector machines 
outperform neural networks and case-based reasoning.     
 Chen et al. [21] analyse the predictability of the Taiwan Stock Exchange via 
probabilistic neural networks and generalised methods of moments with a 
Kalman filter. Their results show that the probabilistic neural networks-based 
investment strategies obtain higher returns than the investment strategies 
generated by the buy-and-hold, random walk model and parametric generalised 
method of moments.  
     These findings are of importance because they show that the relation between 
an accurate directional forecast of a stock index and capital gains is stronger than 
the one between an accurate stock index level forecast and capital gains. 
However, none of these studies has analysed the implications of non-
synchronous closing prices on their trading strategies. Moreover, none of these 
studies (in the case of methods that produce continuous outputs) has analysed the 
prediction accuracy regardless of the cut-off value. Is a classifier better than the 
random model for any cut-off value? This paper addresses the aforementioned 
limitations.  
 

3 Methodology 

3.1 Data Sets 

The data sample was obtained from three large emerging markets. It consisted of 
daily closing index levels of the IPC (Mexico), KLSE Composite (Malaysia) and 



Bovespa (Brazil) stock indices. The daily closing index levels spanned from 
January 1990 to December 2003 and were provided by each country’s stock 
exchange. 

This study attempts to predict the direction of the daily changes in the stock 
price indices. The discrete dependent variable (output) was codified with 1 when 
there was an up-movement, 0 otherwise. 
     The explanatory variables used to analyse the stock indices were the 
following technical indicators: the 14-day Relative Strength Index (RSI), 14-day 
Stochastic RSI, 4-day Momentum, 14-day Disparity, 21-day Disparity, Price 
Oscillator and Price rate-of-change (1&2-day). All of the explanatory variables 
were lagged one day. The use of these technical indicators along with their 
specification was based on the facts that they are widely known and commonly 
used with such specification. See StockCharts [27] and Chande and Kroll [22] 
for clear and easy explanations on the employed technical indicators.            
     The data were divided into two sets. One data set for training and validation 
and the other one for testing. About 20% of the data was used for testing. In 
order to avoid data snooping, we did not tweak the classification techniques 
parameters contingent on the error provided by the test data. All of the 
explanatory variables were normalised to a mean equal to zero and standard 
deviation equal to one. The mean and standard deviation obtained from the 
training data were used to normalise the test data.      

3.2 Classification Techniques 

The logistic regression model (Logit) arises from the desire to model class 
probabilities via linear functions in the explanatory factors space (linear decision 
boundaries). The Logit will produce accurate forecasts if and only if the 
parameterised equation is similar to the true function that discriminates up from 
down movements. In order to reduce the effect of irrelevant explanatory 
variables, a backward subset selection was carried out. See Hastie et al. [7] for 
further details. 
     Neural Networks model linear combinations of explanatory variables adjusted 
to a transfer function. The architecture of a neural network will depend on the 
number of explanatory variables (inputs), number of hidden layers, number of 
neurons per hidden layer and number of response variables (output). In this study 
we fixed the number of hidden layers to one and the number of neurons per 
hidden layer to 6 and 24. The sigmoid function was the transfer function for each 
layer. In the optimization process we used one fast training algorithm: the 
variable learning rate backpropagation with momentum. As for the stopping 
criteria, this study allowed 500 learning epochs since a higher number of 
learning epochs did not produce a decrease in the error function.   
 Tree-based techniques partition the explanatory variables space into a set of 
rectangles and then fit a simple model to each one. Tree-based model try to find 
the split that maximizes the decrement in the impurity function in order to make 
a tree grow. This is done iteratively until a certain amount of observations is 
reached or no further decrements in impurity functions are found. If the tree 
produced by the aforementioned algorithm is too large (not easy to interpret) 



and/or over-fits the training data, then a pruning stage will be needed. The 
pruning tries to find the best ratio derived from changes in the impurity function 
produced by changes in the number of terminal nodes (complexity parameter). 
Usually, the criterion that defines the best ratio is the error rate in an independent 
or test sample or the k-Fold Cross-Validation error rate. See Breiman et al. [11] 
for further details. 
 Although tree-based models are highly popular among researchers, such 
models have a weakness: they produce poor estimates of class probabilities (See 
Provost and Domingos [23] and references therein). In order to deal with this 
limitation we took several strategies. First, we did not prune the classification 
trees. Second, we implemented a bagging predictor method. This is a method of 
generating multiple versions of a predictor to be used for obtaining an 
aggregated predictor. Each predictor is grown from datasets drawn at random 
(with replacement) from the training data. Each dataset is of the same size as the 
training set. See Breiman [12] for further details.  

We used the Gini impurity function for the tree-based models. In the bagging 
predictor estimation, the number of bootstrap replications was incremented until 
the ‘optimal’ out-of-bag error rate (misclassification rate) was found. ‘Optimal’ 
here means that future increments in bootstrap replications did not decrease the 
out-of-bag error rate.        
     Third, we estimated a Random Forest. This technique, besides implementing 
a bagging predictor, uses a random selection of features to split each node (F). 
For each bootstrap replication, about one third of the instances are left out in the 
calculation of the out-of-bag error rate. See Breiman [9] for further details. 
 As for the Random Forest, we fixed to 1 the number of randomly selected 
features to split each node. The number of grown trees (bootstrap replications) 
was incremented until the ‘optimal’ out-of-bag error rate was found. ‘Optimal’ 
has the same connotation as in the bagging prediction estimation.   
 Finally, we estimated a Gradient Boosting Machine. This technique 
constructs additive regression models by fitting a simple base learner, typically a 
small tree, to the current ‘pseudo’-residuals. The ‘pseudo’-residuals are a 
function of the loss function employed in the analysis. In this article we used the 
Bernoulli loss function. Yet two questions remain: what is the right size of the 
tree (base learner)? And how many boosting iterations must be done? In relation 
to the first question, we allowed the maximum number of variables’ interactions 
to be 1, 3 and 5. Regarding the second question, we stopped the boosting 
iterations when the out-of-bag estimate of the marginal reduction in the loss 
function was zero. With the objective to increase accuracy and execution time, 
we incorporated randomness in the procedure as described in Friedman [24] by 
using 50% of the training data to propose the next tree (base learner).  
 The last classification method employed in the analysis was PolyClass. It was 
developed by Stone et al [8]. The PolyClass is a hybrid of MARS (Friedman 
[25]) that is specifically designed to handle classification problems. Just like 
MARS, the PolyClass grows the model in a forward stage-wise fashion. Both 
methods use linear splines in their expansions. The main difference lies with the 
estimation algorithm. The PolyClass first looks for linear functions (without 



knots), then for interactions among them and, finally, for specific knots of the 
function that has already been incorporated into the model. Although the 
decision to add each function is a function of minimizing a sum-of-squares, the 
final model will be estimated via the Maximum Likelihood Estimation. In order 
to avoid over-fitting, the model selection was carried out with the 10-Fold Cross-
Validation.                   

3.3 The Receiver Operating Characteristic Curve 

 
A ROC curve is obtained by plotting Sensitivity versus 1 - Specificity for various 
cut-off values. The points on a ROC curve are either joined by line segments or 
smooth curves with the use of nonparametric and parametric procedures, 
respectively.  
     The area under a ROC Curve (AUC) is equal to the probability that a 
randomly selected observation from the up-movement cases scores higher than a 
randomly selected observation from the down-movement cases (Hanley and 
McNeil [2]). A ranking probability equal to 1 and 0.5 would imply a perfect 
classifier and a random classifier, respectively. In this article a nonparametric 
approach, the Mann-Whitney-U Statistic, was chosen to obtain the AUC and its 
standard error was calculated with the use of the negative exponential model 
(Hanley and McNeil [2]).  
 

4 Results 

The majority of the experiments were carried out in R: Environment for 
Statistical Computing and Graphics with the following add-on packages: tree 
(developed by B.D. Ripley), ipred (developed by A. Peters and T. Hothorn),   
polspline (developed by C. Kooperberg), randomForest (R-port by A. Liaw and 
M. Wiener, original code by L. Breiman and A. Cutler) and gbm (developed by 
G. Ridgeway). The Neural Networks experimentation was run in MATLAB: The 
Language for Technical Computing, version 6.1. The AUC was estimated with 
ROCKit (developed by C.E. Metz).  

In regard to the bagging predictor, the number of bootstrap replications for 
the IPC, KLSE and Bovespa stock indices was 50. The numbers of boosting 
iterations for the Gradient Boosting Machine with shrinkage equal to 1% for one, 
three and five-level interactions are shown in Table 1. 
 

Number of boosting iterations Index
IPC KLSE Bovespa

IL=1 13 123 72
IL=3 8 87 46
IL=5 9 84 54  

Table 1: Number of boosting iterations for the Gradient Boosting Machine 
 



In our experiments with the Random Forest, the out-of-bag error converged 
with less than 200 trees (bootstrap replications). The extreme case was the 
Bovespa index, where more than four trees substantially increased the out-of-bag 
error rate.   

The out-of-sample discriminatory accuracy for all the classification 
techniques is shown in Table 2.     

AUC for each stock index
Techniques Specfication IPC KLSE Bovespa

Logit
Full .5332±.0222 .5726±.0222 .5101±.0215

Backwards Subset .5260±.0222 .5731±.0222 .5206±.0215
Neural Networks

Gradient Descent with Momentum
  6 Neurons per Hidden Layer .5545±.0221 .5644±.0222 .5389±.0214
24 Neurons per Hidden Layer .5512±.0221 .5781±.0221 .5199±.0215

PolyClass
10-Fold Cross Validation .5498±.0221 .5523±.0223 .5206±.0215

Tree-based model
Gini Impurity Function .5239±.0222 .5714±.0222 .5213±.0215

Bagging Predictor .5430±.0222 .6036±.0219 .5179±.0215
Gradient Boosting Machine

Interaction Level (IL)
IL = 1 .5487±.0221 .5600±.0223 .5235±.0215

 IL = 3 .5598±.0221 .5643±.0222 .5289±.0214
IL = 5 .5654±.0220 .5660±.0222 .5364±.0214

Random Forest
F=1 .5503±.0221 .6006±.0219 .5537±.0213

Note: Areas statistically different from one half (at 95%) in Bold.   
Table 2: Area under the ROC curve and its standard error for the test data. 

 
It can be seen from Table 2 that there was at least one classification technique 

per stock index that was able to discriminate better than random at the 5% 
significance level. Higher levels of accuracy where found in Malaysia. There all 
of the classification techniques were able to beat a coin toss classification. 
Exactly the opposite occurs in Brazil, where only one technique (Random 
Forest) was able to discriminate up from down movements better than random. 
There are two possible reasons for this discrepancy. First, the technical indicators 
specifications used here might not be appropriate for the Brazilian stock index. 
Second, the randomness injected to each split was the reason for the improved 
accuracy. However, the underlying favourable mechanism was not obvious.   

Notice that the Random Forest was the only classification technique able to 
recognise a pattern in the three indices. Clearly, the results are not optimised. In 
the feature space one can search for the best specification of the technical 
indicators to improve accuracy or implement a feature extraction technique. The 
Tree-based models, PolyClass and Neural Networks can improve accuracy with 
the presence of a validation set independent of the training set. However, the 
results are consistent in the sense that the daily movements can be predicted 
better than random when using simple and common lagged technical indicators. 



5 Trading Simulation 

The evidence that some classification techniques are able to forecast the 
direction of the stock indices better than random suggests that it might be 
possible to construct a set of trading strategies. Consequently, we formulated a 
set of trading strategies guided by the probabilities predicted by the Gradient 
Boosting Machine, Random Forest and Random Forest for the IPC, KLSE 
composite and Bovespa stock indices, respectively.  

The trading simulation assumes the following: 
• Investors are able to sell short stock indices. 
• Transaction costs are equal across purchases and sales of stock 

indices. 
• Transaction costs are proportional to indices levels.  

In order to avoid fixing transactional costs, we search for one-way transaction 
costs that make average trading profits equal to zero (Break-Even Costs).      
 With the objective to reduce a possible trading profits bias we followed the 
next strategies: First, investors can only buy or sell short stock indices. Second,  
trading profits or losses are made per day with no reinvestment. Third, we did 
not execute trades at the closing prices, instead we estimated the ‘true’ closing 
prices as described in Jokivuolle [26] to reduce the bias induced by non-
synchronous price quotations. 
 Jokivuolle [26] shows that the log of the ‘true’ stock index level can be 
estimated by using the permanent component of the Beveridge-Nelson 
decomposition. We have chosen to use an MA(1) process for the IPC and KLSE 
for the following reasons:  

• The estimated autocorrelations and partial autocorrelations were not 
statistically different from zero beyond the first lag.  

• The Ljung-Box autocorrelation statistic for the first four lags of the 
MA(1) residuals was statistically insignificant.  

As for the Bovespa index, we have chosen to use an MA(1) process in order to 
be consistent with the time series model selected for the other stock indices.  
 The estimated ‘true’ stock indices levels were used as the closing prices 
(execution prices). If the estimated probabilities are higher than the cut-off value, 
then he or she will buy a stock index and sell it tomorrow. If the estimated 
probability is lower than the cut-off value, he or she will sell short a stock index 
and close the position the following day. The cut-off values used in the trading 
simulation where the percentage of up-movements in the test sample.- i.e. in this 
case they were 52.5, 50 and 49 per cent for the IPC, KLSE and Bovespa indices, 
respectively.  

The results of the trading strategies (one-way break-even transaction costs) 
are shown in Table 3.  



IPC (Mexico) B-E Costs KLSE (Malaysia) B-E Costs Bovespa (Brazil) B-E Costs
GBM(IL=5) 0.190% Random Forest 0.039% Random Forest 0.036%
Random Walk -0.171% Random Walk 0.007% Random Walk -0.016%
Contrarian Investment 0.171% Contrarian Investment -0.007% Contrarian Investment 0.016%
Perfect Classifier 0.651% Perfect Classifier 0.402% Perfect Classifier 0.750%

 
Table 3: Break-Even (B-E) Costs. 

 
The single day trading strategies were compared with other strategies. The 

random walk trading strategy will have a buy signal if the last trading day has an 
up-movement, and vice versa. The contrarian investment strategy will have a buy 
signal if the last trading day has a down-movement, and vice versa. The perfect 
classifier was included for comparison purposes. In other words, what are the 
costs that make average trading profits equal to zero despite knowing the future? 
 It can be seen from Table 3 that the probability-based trading models need 
higher one-way transaction costs than both the random walk and contrarian 
investment strategies. The low one-way transaction costs are mainly due to 
heavy trading and a relatively low discriminatory power of the classifiers.  

Investment periods and different trading strategies such as switching between 
fixed income securities and stocks could improve profitability. However, they 
were not considered here because they could bias the result of a classifier only 
trained for understanding up-down movements and not for choosing between 
fixed income securities and stocks.  

6 Conclusions 

This empirical paper examined the extent to which the daily movements of three 
large emerging markets stock indices (Brazil, Malaysia and Mexico) were 
predictable. Lagged technical indicators were used as the explanatory variables 
of seven classification techniques. The discriminatory power of the classifiers 
was assessed through the area under the receiver operating characteristic (ROC) 
curve. The results showed that the daily movements of the three indices were 
better predictable than random. Indeed, the Random Forest was able to forecast 
the daily movements of the three stock indices better than random. After having 
taken into account the bias induced by non-synchronous price quotations, a 
trading system with break-even costs was simulated. The non-random classifiers 
yielded returns above those of both random walk and contrarian investment 
strategies. No inefficiency was found due to the fact that relatively low break-
even transaction costs were enough to wipe out the sources of trading profits.        
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