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1. – Introduction  
 
Is a move upward or downward in stock prices predictable? A considerable amount of 

work has been devoted to examining whether or not this is feasible. Even though the 

presence of linear predictable components in stock returns is nowadays widely accepted 

(see, e.g., Fama [1], Lo and MacKinlay [2], Conrad and Kaul [3], Jegadeesh [4] and Kaul 

[5]), the existence of a function (or formula) which expresses the likelihood of a market 

fluctuation is not.  

 

 Recent advances in both analytic and computational methods, however, have 

helped empirical investigation on the behavior of security prices. Particularly, direction-

of-change (or sign) predictability is currently evaluated via either supervised learning 

techniques or machine learning algorithms or classifier induction techniques (see, e.g., 

Apte and Hong [6], Tsaih, Hsu, and Lai [7], Zemke [8], Chen, Leung, and Daouk [9], 

Kim [10], Rodriguez and Rodriguez [11] and O’Connor and Madden [12], among 

others). Although this branch of research provides evidence in support of the existence of 

a function that discriminates up from down movements, it is not clear whether or not 

machine learning algorithms are extracting information beyond that contained in 

autocorrelation patterns.     

 

In this paper, we reexamine the sample evidence of direction-of-change 

predictability in weak-form tests. In particular, we use a machine learning algorithm that 

is among the most popular and most successful for classification tasks called Adaboost. 

One of the main properties that make the application of Adaboost to financial databases 
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interesting is that it has showed, in many applications (albeit in non-financial databases), 

robustness against overcapacity and produced, in many cases, low test-set error. 

 

 When we apply Adaboost to S&P 500 daily data, one main conclusion emerges 

about stock return predictability. We show that periods characterized by high first-order 

serial correlation in stock returns allow both in-sample and out-of-sample direction-of-

change predictability. In essence, the lack of autocorrelation in stock returns does not 

permit Adaboost to discover a function that discriminates between upwards and 

downwards movements better than random. Indeed, simple random classifiers (i.e., coin-

toss classifiers) are able to explain the apparent predictability in such periods.  

 

 In Section 2, we provide a brief review of machine learning algorithms and 

describe in detail the specific machine learning algorithm we use in our analysis: 

Adaboost. We apply this algorithm to the daily returns of the S&P 500 stock index from 

1962 to 2004 and report the results in Section 3. To check the accuracy of our 

predictions, we estimate several random classifiers and autoregressive models and the 

results are also given in Section 3. Finally, in Section 4 we offer some concluding 

remarks.    

 

2. - Machine Learning Algorithms and Adaboost  
 

The starting point for any study of stock return predictability is the recognition 

that prices, or more specifically, returns develop in either a linear or nonlinear fashion 
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over time and that their behavior contain certain stable patterns.1 In order to obtain those 

patterns, we start by declaring that stock price movements {  satisfy an expression like 

the following: 

}y

                                          1, , 1, ,( ,..., )t t z j t F jy x x tϕ ε− −= +                                                    (1) 

where is the number of potential predictors (or inputs),  is the realization of the 

factor for the asset at time 

F 1, ,t z jx −

z j 1t − , ( )ϕ i is an unknown smooth function that maps the 

lagged predictors to the response variable, tε  is the noise component and is the 

“output” or “response” variable 

y

,y C∈ where  is the set of class labels. In this paper, 

0 otherwise.

C

,1 if( >0), f
t t j ty R R→ − 2 In other words, positive equity premiums were 

codified with 1’s. Hence, we consider here a two-class case, i.e., {0,1}.ty C∈ =  

 

 When stock price movements are expressed as in Equation (3), it is evident that 

quantitative patterns may emerge from the application of machine learning algorithms. 

But just how useful are these uncovered patterns? 

 

 To answer this question empirically, we must test the in-sample and, more 

importantly, the out-of-sample discriminatory accuracy of the learning algorithms used to 

uncover ˆ( )ϕ ⋅ . In Section 2.A, we provide a brief review of Adaboost. Section 2.B briefly 

describes tree-based models.  

                                                 
1 As pointed out by Bossaerts and Hillion [13], there are not intuitive economic reasons why the set of 

significant variables should erratically change form one month to the next.    

2 ,t jR is the return of asset j at time  and t f
tR is the risk-free return at time . t
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 A. Adaboost 

Boosting was created from the desire to transform a collection of weak classifiers 

into a strong ensemble or weighted committee. It is a general method for improving the 

performance of any learning algorithm. Boosting was proposed in the computational 

learning theory literature by Schapire [14] and Freund [15]. Freund and Schapire [16] 

solved many practical difficulties of earlier boosting algorithms with the creation of 

Adaboost. 

 

Much has been written about the success of Adaboost in producing accurate 

classifiers. In fact, one of the main characteristic of this procedure is that the test error 

seems to consistently decrease and then level off as more classifiers are added, without 

having an ultimately increase. The main steps of the Adaboost’s algorithm are:3

 

1. Start with weights 1/ , 1,...,iw n i n= =  

2. For m = 1, …, M  do: 

(a) Fit the machine learning algorithm ˆ ( )mϕ ⋅ using weights  on the 

training data. 

iw

(b) Compute ˆm m( ( ))err [ ] and log((1 err ) / err ).
mw myE I cϕ≠ ⋅ m= = −  

(c) Update ˆ( ( ))exp[ ], 1,...,
i mi i m yw w c I iϕ≠ ⋅ n← ⋅ =  and renormalize so 

that 1.iw =∑  

3. Output  
1

ˆ ˆ( ) sign[ ( )].
M

m m
m

cϕ ϕ
=

⋅ = ⋅∑

 

                                                 
3 ( )SI is the indicator function of the set S and denotes the weighted average of error with weights 

 
wE

1( ,..., ).nw w w=
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Note that at step m, those observations that were misclassified by the classifier 

1ˆ ( )mϕ − ⋅ induced at the previous step have their weights increased; therefore, as Hastie et 

al. [17, 300-301] clearly state “[e]ach successive classifier is thereby forced to 

concentrate on those training observations that are missed by previous one in the 

sequence.”    

 

In this paper, we use 2-node tree-based models, also known as stumps, as base 

learners: the machine learning algorithm used to obtain ˆ ( )mϕ ⋅ at each iteration. The 

implementation was carried out in R: Environment for Statistical Computing and 

Graphics with the ada add-on package developed by Culp, Johnson, and Michailidis [18].   

 

B. Tree-based models 

The origins of classification trees or hierarchical classification come from two 

areas of investigation. In the field of statistical pattern recognition Breiman, Friedman, 

Olshen, and Stone [19] developed a technique named CART (Classification and 

Regression Trees). The Machine Learning community provided a computer program 

called ID3, which evolved into a new system named C4.5 (see Quinlan [20,21]).     

 

Tree-based techniques involve partitioning the explanatory variables space into a 

set of rectangles and then fit a simple model to each one. A tree-based model tries to find 

the split that maximizes the decrement in a loss function in order to make a tree grow. 

This is done iteratively until a certain amount of observations is reached or no further 

decrements in the loss function are found. More formally, a tree may be expressed as,   
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1

( ; ) ( ),
J

j
j

T Iγ
=

Θ = ∈∑x x jR

.

                                                  (2) 

with parameters 1{ , }J
j jR γΘ =  Where jγ  (a constant) is assigned to a region ( jR ). The 

constant can be a value, a probability or a class label assigned to an element in the region 

jR . is usually treated as a meta-parameter and can be interpreted as the maximum 

amount of admissible interactions among explanatory variables less one, and 

J

( )I • is an 

indicator function. It is worth mentioning that J also represents the stopping criteria of the 

top-down algorithm of the tree-based models (briefly described below) and that we fixed 

to two. In other words, we use the so-called stumps. Here the parameters 1{ , }J
j jR γΘ =  

are found by minimizing the empirical risk, like in the following equation: 

1
arg min ( , )

i j

J

i j
j R

L y γ
∧

Θ
= ∈

Θ = ∑ ∑
x

                                       (3) 

where ( )L • denotes a loss function. This is an extraordinary combinatorial optimization 

problem, so we must rely on sub-optimal solutions. The aforementioned optimization 

problem can be divided into two parts. The first one, finding jγ  given jR , is typically 

trivial, where � jγ  is the modal class of observations falling in region jR . The difficulty of 

this combinatorial optimization problem is based on finding jR . A helpful solution is to 

employ heuristic methods.  

 

Safavian and Landgrebe [22] provide a survey on heuristic methods proposed for 

designing decision trees. The most popular heuristic method in tree-based models is the 

top-down recursive partitioning, which starts with a single region covering the entire 
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space of all joint input values. This is partitioned into two regions by choosing an optimal 

splitting input variable jx  and a corresponding optimal split point s. Values in  for 

which 

x

jx s≤  are defined to be the left daughter region, and those for which jx s>  

denote the right daughter region. Then each of these two daughter regions is optimally 

partitioned with the same strategy, and so forth.   

 

 In this paper, we replaced the loss function with the Gini index, given by 

l l
1

Gini index : (1 ).
K

mk mk
k

p p
=

−∑                                                   (4) 

where in a node m, representing a region jR , let lmkp  be the proportion of class k 

observations in the node m, and K represents the total number of classes or populations 

under study. The implementation was carried out in R: Environment for Statistical 

Computing and Graphics with the ada add-on package, developed by Culp, Johnson, and  

Michailidis [18].   

 
 
3. – Empirical Results 
 
The empirical application uses S&P 500 daily closing prices from August 7, 1962 to 

December 31, 2004. The data set was divided into four non-overlapping sets. Since it is 

well-known that the ultimate measure of quality of a learner is its generalization 

performance, we divided each set into two sub-samples. The first sub-sample is used for 

training, whereas the second sub-sample is used for testing. We assume that future stock 

price movements{ may be related to past returns, as in the following equation: }y

                                               1 24( ,..., ), 25,...,i i iy f r r i− − n= =                                            (5) 
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where  equals 1 if the return observed at time i { } is greater than zero, 0 otherwise. 

We applied the algorithm described in Section 2.A to the each training set. The results are 

shown in Table 1. 

iy ir

  

**************** 
Table 1 about here 

**************** 
  

Table 1 displays several accuracy measures, as explained below. We use these 

accuracy measures to analyze the properties of Adaboost’s in-sample and out-of-sample 

performance. We study six specifications corresponding to iterations {M} equal to 1, 2, 

25, 50, 200, and 1000.  

 

 The in-sample and out-of-sample accuracy measures are (a) the error rate, which 

corresponds to the total number of misclassified observations divided by the total number 

of observations; (b) the bias, defined as systematic loss incurred by the function; (c) the 

unbiased variance (denoted by Vu) evaluates the extent to which the estimated function 

deviates from the correct predictions; and (d) the biased variance (denoted as Vb) 

assesses the extent to which the estimated function deviates from the incorrect 

predictions. These accuracy measures are described in more technical detail in the 

Appendix. 

 

 In the first two data sets, the bias plays a significant role in its contribution to the 

error rate. In other words, the systematic loss incurred by the functions is higher than the 

total error rate. Moreover, Adaboost’s error has a positive relationship with the total 
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number of iterations {M}. Evidently, this later result indicates that Adaboost rapidly 

over-fits the data.        

 

In contrast, in the last two data sets, the bias is lower than the error rate. This only 

occurs when the loss incurred by function’s fluctuations around the central tendency in 

response to different samples has a direct effect on error. Note also how the error 

decrease has the number of iterations increases.  

 

 We simulated 1000 coin-toss classifiers for each data set to analyze the extent to 

which the results reported in Table 1 can be explained by randomness. To obtain each 

random classifier, we generate random values from a discrete distribution in which two 

values where possible: 1’s and 0’s. Each value was assigned 50 per cent probability. The 

results for each data set are shown in Table 2.    

    

**************** 
Table 2 about here 

**************** 
 

 Table 2 shows the distribution of the error rate of the random classifiers. As can 

be seen, randomness can explain up to 46 percent, approximately, of out-of-sample 

errors. Thus, classifiers achieving higher out-of-sample error rates can be considered as 

random. In fact, only in the first two data sets was Adaboost able to obtain lower out-of-

sample error rates. But what are the factors that affect Adaboost’s ability to discriminate 

between stock price movements? 
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 One possible way to answer this question is to gauge traditional benchmarks. In 

doing so, we can evaluate whether or not simple linear models are able to explain 

Adaboost’s predictability. To that end, we estimated a simple first-order autoregressive 

model for each period, and the results are shown in Table 3.  

 

**************** 
Table 3 about here 

**************** 
 

 

Table 3 displays the same accuracy measures as Table 1. In addition, Table 3 

shows the AR(1) model estimated in the training sample of each data set. Not 

surprisingly, a simple autoregressive model is able to obtain very similar direction-of-

change predictability as Adaboost. Similar to Table 1, the autoregressive models are able 

to obtain in-sample predictability but fail to detect out-of-sample predictability in the last 

two data sets. The disappearance of the predictability documented here is consistent with  

Allen and Karjalainen [23] ’s results.  

 

4. – Concluding remarks 

In this paper, we have implemented a classifier induction approach to analyze the sample 

evidence on return predictability. We obtain the following general results. First, periods 

characterized by high first-order serial correlation in stock returns allow both in-sample 

and out-of-sample direction-of-change predictability. Specifically, a powerful machine 

learning algorithm called Adaboost is able to find a stable function which discriminates, 

better than randomly made decisions, between upward and downward movements.     
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 Second, Adaboost does over-fit. Functions induced in periods characterized by the 

lack of autocorrelation in stock returns are able to obtain in-sample predictability but fail 

to detect out-of-sample predictability. In fact, in many cases, Adaboost’s out-of-sample 

performance decreases as more iterations are run. We have also examined different 

Adaboost specifications, such as using 4- and 8-node tree-based models instead of 

stumps, and achieved faster over-fitting.  

 

 There are several natural extensions to our analysis. First, machine learning 

algorithms can be used to examine large price change predictability. They can also be 

modified to study predictability of large absolute price movements, which are useful for 

option trading strategies. Second, machine learning algorithms are sufficiently flexible to 

examine the performance of nested models. For example, one can induce classifiers for 

small-cap indices using small-cap’s or large-cap’s lags, and evaluate the lead-lag effect in 

terms of movement predictability. Finally, machine learning algorithms can be used to 

identify risk exposures. For instance, we can codify costly lower-tail outcomes and search 

for “inputs” or “explanatory” variables that help a machine learning algorithm 

discriminate between the costly lower-tail outcomes and the remainder of outcomes. We 

hope to explore these issues more fully in future research.    
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Appendix: The Bias-variance decomposition of 0/1 loss function 
 

The 0/1 loss function is usually the main criterion for classification problems, and may be 

represented as in the following equation: 

ˆ( , ),i i iE L t y=                                                       

where at time i, is the “output” or “response” variable it ,t C∈ where is a set of class 

labels. In this paper, , where equals to 1 if the observed equity premium is 

higher than zero, 0 otherwise. is the predicted movement. equals to 1 if the predicted 

equity premium is higher than zero, 0 otherwise. equals to 1 if 

C

{0,1}C∈ C

ˆiy ˆiy

iE ˆit yi≠ , 0 otherwise. In 

other words, the 0/1 loss function represents one less the proportion of correctly predicted 

signs.  

 

In the machine learning literature, the bias-variance decomposition is widely used 

as key tool for understating function approximation algorithms. Following Domingos 

[24] and Valentini and Dietterich [25], bias and variance in a noise-free setting can be 

defined in terms of the main prediction. The main prediction  can be defined as the 

movement that is predicted more often in the test sample. Thus, the bias (systematic loss 

incurred by the function) at time i can be computed as, 

my

 i

1 if  
.

0 if 
m i

m i

y t
B

y t
≠⎧

= ⎨ =⎩
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 To distinguish between the two different effects of the variance on the loss 0/1 

loss function, Domingos [24] defines the unbiased variance, , to be the variance when 

and can be calculated as, 

uV

0,iB =

                             ˆ( ) and ( ) ,i
u m i m iV y t y y= = ≠                                        

where 1s = if s is true, 0 otherwise. The unbiased variance evaluates the extent to which 

the estimated function deviates from the correct predictions. The biased variance, , 

occurs when and evaluates the extent to which the estimated function deviates 

from the incorrect predictions. The biased variance can be estimated as, 

i
bV

1,iB =

         ˆ( ) ( ) and ( ) .i
b m i mV y t y y= ≠ ≠x i

i

                                        

 

 To obtain the loss associated with a given observation a time i [denoted by ], 

we simply compute the algebraic sum of bias, unbiased and biased variance as, 

iE

          .i
i i u bE B V V= + −                                                        

In order to compute the aforementioned variables in a test set, we simply obtain the 

average for each variable. Clearly, if we want a good function that distinguishes between 

up-and-down movements, we want the bias and the unbiased variance to be small. 
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Table 1. Direction-of-change predictability of Adaboost. 

A. First sub-sample. Training (19620807-19681112) and Testing (19681113-19721229)
Specification In-sample evidence Out-of-sample evidence

Error Bias Vu Vb Error Bias Vu Vb
M =1 0.4136 0.4405 0.2427 0.2697 0.3895 0.4715 0.2246 0.3066
M = 2 0.4136 0.4405 0.2427 0.2697 0.3895 0.4715 0.2246 0.3066
M = 25 0.3911 0.4405 0.177 0.2260 0.4136 0.4715 0.1793 0.2372
M = 50 0.3898 0.4405 0.175 0.2261 0.4127 0.4715 0.1765 0.2353
M = 200 0.3866 0.4405 0.117 0.1708 0.4147 0.4715 0.1369 0.1938
M = 1000 0.3230 0.4405 0.112 0.2293 0.4272 0.4715 0.1745 0.2189

B. Second sub-sample. Training (19730102-19790808) and Testing (19780809-1983123
Specification In-sample evidence Out-of-sample evidence

Error Bias Vu Vb Error Bias Vu Vb
M =1 0.4353 0.4994 0.0803 0.1445 0.4658 0.4766 0.1061 0.1169
M = 2 0.4353 0.4994 0.0803 0.1445 0.4658 0.4766 0.1061 0.1169
M = 25 0.4107 0.4994 0.21 0.2992 0.4604 0.4766 0.2437 0.2599
M = 50 0.4053 0.4994 0.174 0.2686 0.4667 0.4766 0.2221 0.2320
M = 200 0.3783 0.4994 0.181 0.3022 0.4739 0.4766 0.2338 0.2365
M = 1000 0.3237 0.4994 0.153 0.3291 0.4937 0.4766 0.2572 0.2401

C. Third sub-sample. Training (19840103-19900808) and Testing (19900809-19941230
Specification In-sample evidence Out-of-sample evidence

Error Bias Vu Vb Error Bias Vu Vb
M =1 0.5494 0.4506 0.5494 0.4506 0.5198 0.4802 0.5198 0.4802
M = 2 0.5494 0.4506 0.5494 0.4506 0.5198 0.4802 0.5198 0.4802
M = 25 0.4446 0.4506 0.029 0.0348 0.4847 0.4802 0.0207 0.0162
M = 50 0.4230 0.4506 0.081 0.1084 0.4838 0.4802 0.0791 0.0755
M = 200 0.3913 0.4506 0.116 0.1756 0.4784 0.4802 0.1214 0.1232
M = 1000 0.3355 0.4506 0.104 0.2187 0.4703 0.4802 0.1466 0.1565

D. Fourth sub-sample. Training (19950103-20001226) and Testing (20011227-2004123
Specification In-sample evidence Out-of-sample evidence

Error Bias Vu Vb Error Bias Vu Vb
M =1 0.5410 0.4590 0.5410 0.4590 0.5084 0.4916 0.5084 0.4916
M = 2 0.5410 0.4590 0.5410 0.4590 0.5084 0.4916 0.5084 0.4916
M = 25 0.4187 0.4590 0.13 0.1700 0.4945 0.4916 0.1440 0.1410
M = 50 0.3981 0.4590 0.083 0.1442 0.5055 0.4916 0.1470 0.1331
M = 200 0.3724 0.4590 0.101 0.1872 0.4985 0.4916 0.1698 0.1629
M = 1000 0.3247 0.4590 0.1210 0.2553 0.4826 0.4916 0.1917 0.2006
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Table 2. Random predictability 

A. First sub-sample. Training (19620807-19681112) and Testing (19681113-19721229)

Percentil 0.01 0.05 0.25 0.50 0.75 0.95 0.99
In-sample error 0.4701 0.4804 0.4907 0.4997 0.5080 0.5202 0.5292

Out-of-sample error 0.4648 0.4754 0.4899 0.4995 0.5092 0.5236 0.5362

B. Second sub-sample. Training (19730102-19790808) and Testing (19780809-19831230

Percentil 0.01 0.05 0.25 0.50 0.75 0.95 0.99
In-sample error 0.4724 0.4802 0.4922 0.5000 0.5078 0.5204 0.5288

Out-of-sample error 0.4685 0.4757 0.4901 0.5009 0.5108 0.5234 0.5324

C. Third sub-sample. Training (19840103-19900808) and Testing (19900809-19941230)

Percentil 0.01 0.05 0.25 0.50 0.75 0.95 0.99
In-sample error 0.4727 0.4805 0.4924 0.4997 0.5075 0.5195 0.5261

Out-of-sample error 0.4649 0.4748 0.4901 0.5009 0.5108 0.5252 0.5342

D. Fourth sub-sample. Training (19950103-20001226) and Testing (20011227-20041231)

Percentil 0.01 0.05 0.25 0.50 0.75 0.95 0.99
In-sample error 0.4702 0.4795 0.4914 0.4993 0.5099 0.5212 0.5284

Out-of-sample error 0.4667 0.4747 0.4886 0.4995 0.5104 0.5263 0.5353
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Table 3. Direction-of-change predictability of an AR(1) model. 

A. First sub-sample. Training (19620807-19681112) and Testing (19681113-19721229)
Model: R t  =  0.0005313117 + 0.1417891R t-1

In-sample evidence Out-of-sample evidence
Error Bias Vu Vb Error Bias Vu Vb

0.4248 0.4402 0.0790 0.094 0.4011 0.4715 0.0848 0.1552

B. Second sub-sample. Training (19730102-19790808) and Testing (19780809-19831230)
Model: R t  =  0.0001423972 + 0.2224826R t-1

In-sample evidence Out-of-sample evidence
Error Bias Vu Vb Error Bias Vu Vb

0.4259 0.4997 0.1968 0.271 0.4676 0.4766 0.2185 0.2275

C. Third sub-sample. Training (19840103-19900808) and Testing (19900809-19941230)
Model: R t  = 0.0006423667 + 0.05325351R t-1

In-sample evidence Out-of-sample evidence
Error Bias Vu Vb Error Bias Vu Vb

0.4514 0.4502 0.0330 0.032 0.4838 0.4802 0.0234 0.0198

D. Fourth sub-sample. Training (19950103-20001226) and Testing (20011227-20041231)
Model: R t  =  0.003193694 + 0.0008291922R t-1

In-sample evidence Out-of-sample evidence
Error Bias Vu Vb Error Bias Vu Vb

0.4586 0.4586 0.0000 0.0000 0.4916 0.4916 0.0000 0.0000
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