

Using machine learning algorithms to find patterns in
stock prices*

Pedro N. Rodriguez
Universidad Complutense de Madrid

Simon Sosvilla-Rivero

FEDEA and Universidad Complutense de Madrid

First draft: March 6, 2006
This draft: October 25, 2006

Abstract

We use a machine learning algorithm called Adaboost to find direction-of-change
patterns for the S&P 500 index using daily prices from 1962 to 2004. The patterns are
able to identify periods to take long and short positions in the index. This result, however,
can largely be explained by first-order serial correlation in stock index returns.

JEL Classification Numbers: C45, G11, G14

Keywords: Direction-of-change predictability, Machine learning algorithms, Adaboost

*Pedro N. Rodriguez thanks CONACYT (Mexico) for financial support (Fellowship: 170328). Address
correspondence to Professor Sosvilla-Rivero, Fundación de Estudios de Economía Aplicada (FEDEA), C/
Jorge Juan, 46, 28001 – Madrid, Spain, phone: +34 914350401, fax: +34 915779575 e-mail:
simon.sosvilla@fedea.es.

1. – Introduction

Is a move upward or downward in stock prices predictable? A considerable amount of

work has been devoted to examining whether or not this is feasible. Even though the

presence of linear predictable components in stock returns is nowadays widely accepted

(see, e.g., Fama [1], Lo and MacKinlay [2], Conrad and Kaul [3], Jegadeesh [4] and Kaul

[5]), the existence of a function (or formula) which expresses the likelihood of a market

fluctuation is not.

 Recent advances in both analytic and computational methods, however, have

helped empirical investigation on the behavior of security prices. Particularly, direction-

of-change (or sign) predictability is currently evaluated via either supervised learning

techniques or machine learning algorithms or classifier induction techniques (see, e.g.,

Apte and Hong [6], Tsaih, Hsu, and Lai [7], Zemke [8], Chen, Leung, and Daouk [9],

Kim [10], Rodriguez and Rodriguez [11] and O’Connor and Madden [12], among

others). Although this branch of research provides evidence in support of the existence of

a function that discriminates up from down movements, it is not clear whether or not

machine learning algorithms are extracting information beyond that contained in

autocorrelation patterns.

In this paper, we reexamine the sample evidence of direction-of-change

predictability in weak-form tests. In particular, we use a machine learning algorithm that

is among the most popular and most successful for classification tasks called Adaboost.

One of the main properties that make the application of Adaboost to financial databases

 2

interesting is that it has showed, in many applications (albeit in non-financial databases),

robustness against overcapacity and produced, in many cases, low test-set error.

 When we apply Adaboost to S&P 500 daily data, one main conclusion emerges

about stock return predictability. We show that periods characterized by high first-order

serial correlation in stock returns allow both in-sample and out-of-sample direction-of-

change predictability. In essence, the lack of autocorrelation in stock returns does not

permit Adaboost to discover a function that discriminates between upwards and

downwards movements better than random. Indeed, simple random classifiers (i.e., coin-

toss classifiers) are able to explain the apparent predictability in such periods.

 In Section 2, we provide a brief review of machine learning algorithms and

describe in detail the specific machine learning algorithm we use in our analysis:

Adaboost. We apply this algorithm to the daily returns of the S&P 500 stock index from

1962 to 2004 and report the results in Section 3. To check the accuracy of our

predictions, we estimate several random classifiers and autoregressive models and the

results are also given in Section 3. Finally, in Section 4 we offer some concluding

remarks.

2. - Machine Learning Algorithms and Adaboost

The starting point for any study of stock return predictability is the recognition

that prices, or more specifically, returns develop in either a linear or nonlinear fashion

 3

over time and that their behavior contain certain stable patterns.1 In order to obtain those

patterns, we start by declaring that stock price movements { satisfy an expression like

the following:

}y

 1, , 1, ,(,...,)t t z j t F jy x x tϕ ε− −= + (1)

where is the number of potential predictors (or inputs), is the realization of the

factor for the asset at time

F 1, ,t z jx −

z j 1t − , ()ϕ i is an unknown smooth function that maps the

lagged predictors to the response variable, tε is the noise component and is the

“output” or “response” variable

y

,y C∈ where is the set of class labels. In this paper,

0 otherwise.

C

,1 if(>0), f
t t j ty R R→ − 2 In other words, positive equity premiums were

codified with 1’s. Hence, we consider here a two-class case, i.e., {0,1}.ty C∈ =

 When stock price movements are expressed as in Equation (3), it is evident that

quantitative patterns may emerge from the application of machine learning algorithms.

But just how useful are these uncovered patterns?

 To answer this question empirically, we must test the in-sample and, more

importantly, the out-of-sample discriminatory accuracy of the learning algorithms used to

uncover ˆ()ϕ ⋅ . In Section 2.A, we provide a brief review of Adaboost. Section 2.B briefly

describes tree-based models.

1 As pointed out by Bossaerts and Hillion [13], there are not intuitive economic reasons why the set of

significant variables should erratically change form one month to the next.

2 ,t jR is the return of asset j at time and t f
tR is the risk-free return at time . t

 4

 A. Adaboost

Boosting was created from the desire to transform a collection of weak classifiers

into a strong ensemble or weighted committee. It is a general method for improving the

performance of any learning algorithm. Boosting was proposed in the computational

learning theory literature by Schapire [14] and Freund [15]. Freund and Schapire [16]

solved many practical difficulties of earlier boosting algorithms with the creation of

Adaboost.

Much has been written about the success of Adaboost in producing accurate

classifiers. In fact, one of the main characteristic of this procedure is that the test error

seems to consistently decrease and then level off as more classifiers are added, without

having an ultimately increase. The main steps of the Adaboost’s algorithm are:3

1. Start with weights 1/ , 1,...,iw n i n= =

2. For m = 1, …, M do:

(a) Fit the machine learning algorithm ˆ ()mϕ ⋅ using weights on the

training data.

iw

(b) Compute ˆm m(())err [] and log((1 err) / err).
mw myE I cϕ≠ ⋅ m= = −

(c) Update ˆ(())exp[], 1,...,
i mi i m yw w c I iϕ≠ ⋅ n← ⋅ = and renormalize so

that 1.iw =∑

3. Output
1

ˆ ˆ() sign[()].
M

m m
m

cϕ ϕ
=

⋅ = ⋅∑

3 ()SI is the indicator function of the set S and denotes the weighted average of error with weights

wE

1(,...,).nw w w=

 5

Note that at step m, those observations that were misclassified by the classifier

1ˆ ()mϕ − ⋅ induced at the previous step have their weights increased; therefore, as Hastie et

al. [17, 300-301] clearly state “[e]ach successive classifier is thereby forced to

concentrate on those training observations that are missed by previous one in the

sequence.”

In this paper, we use 2-node tree-based models, also known as stumps, as base

learners: the machine learning algorithm used to obtain ˆ ()mϕ ⋅ at each iteration. The

implementation was carried out in R: Environment for Statistical Computing and

Graphics with the ada add-on package developed by Culp, Johnson, and Michailidis [18].

B. Tree-based models

The origins of classification trees or hierarchical classification come from two

areas of investigation. In the field of statistical pattern recognition Breiman, Friedman,

Olshen, and Stone [19] developed a technique named CART (Classification and

Regression Trees). The Machine Learning community provided a computer program

called ID3, which evolved into a new system named C4.5 (see Quinlan [20,21]).

Tree-based techniques involve partitioning the explanatory variables space into a

set of rectangles and then fit a simple model to each one. A tree-based model tries to find

the split that maximizes the decrement in a loss function in order to make a tree grow.

This is done iteratively until a certain amount of observations is reached or no further

decrements in the loss function are found. More formally, a tree may be expressed as,

 6

1

(;) (),
J

j
j

T Iγ
=

Θ = ∈∑x x jR

.

 (2)

with parameters 1{ , }J
j jR γΘ = Where jγ (a constant) is assigned to a region (jR). The

constant can be a value, a probability or a class label assigned to an element in the region

jR . is usually treated as a meta-parameter and can be interpreted as the maximum

amount of admissible interactions among explanatory variables less one, and

J

()I • is an

indicator function. It is worth mentioning that J also represents the stopping criteria of the

top-down algorithm of the tree-based models (briefly described below) and that we fixed

to two. In other words, we use the so-called stumps. Here the parameters 1{ , }J
j jR γΘ =

are found by minimizing the empirical risk, like in the following equation:

1
arg min (,)

i j

J

i j
j R

L y γ
∧

Θ
= ∈

Θ = ∑ ∑
x

 (3)

where ()L • denotes a loss function. This is an extraordinary combinatorial optimization

problem, so we must rely on sub-optimal solutions. The aforementioned optimization

problem can be divided into two parts. The first one, finding jγ given jR , is typically

trivial, where � jγ is the modal class of observations falling in region jR . The difficulty of

this combinatorial optimization problem is based on finding jR . A helpful solution is to

employ heuristic methods.

Safavian and Landgrebe [22] provide a survey on heuristic methods proposed for

designing decision trees. The most popular heuristic method in tree-based models is the

top-down recursive partitioning, which starts with a single region covering the entire

 7

space of all joint input values. This is partitioned into two regions by choosing an optimal

splitting input variable jx and a corresponding optimal split point s. Values in for

which

x

jx s≤ are defined to be the left daughter region, and those for which jx s>

denote the right daughter region. Then each of these two daughter regions is optimally

partitioned with the same strategy, and so forth.

 In this paper, we replaced the loss function with the Gini index, given by

l l
1

Gini index : (1).
K

mk mk
k

p p
=

−∑ (4)

where in a node m, representing a region jR , let lmkp be the proportion of class k

observations in the node m, and K represents the total number of classes or populations

under study. The implementation was carried out in R: Environment for Statistical

Computing and Graphics with the ada add-on package, developed by Culp, Johnson, and

Michailidis [18].

3. – Empirical Results

The empirical application uses S&P 500 daily closing prices from August 7, 1962 to

December 31, 2004. The data set was divided into four non-overlapping sets. Since it is

well-known that the ultimate measure of quality of a learner is its generalization

performance, we divided each set into two sub-samples. The first sub-sample is used for

training, whereas the second sub-sample is used for testing. We assume that future stock

price movements{ may be related to past returns, as in the following equation: }y

 1 24(,...,), 25,...,i i iy f r r i− − n= = (5)

 8

where equals 1 if the return observed at time i { } is greater than zero, 0 otherwise.

We applied the algorithm described in Section 2.A to the each training set. The results are

shown in Table 1.

iy ir

Table 1 about here

Table 1 displays several accuracy measures, as explained below. We use these

accuracy measures to analyze the properties of Adaboost’s in-sample and out-of-sample

performance. We study six specifications corresponding to iterations {M} equal to 1, 2,

25, 50, 200, and 1000.

 The in-sample and out-of-sample accuracy measures are (a) the error rate, which

corresponds to the total number of misclassified observations divided by the total number

of observations; (b) the bias, defined as systematic loss incurred by the function; (c) the

unbiased variance (denoted by Vu) evaluates the extent to which the estimated function

deviates from the correct predictions; and (d) the biased variance (denoted as Vb)

assesses the extent to which the estimated function deviates from the incorrect

predictions. These accuracy measures are described in more technical detail in the

Appendix.

 In the first two data sets, the bias plays a significant role in its contribution to the

error rate. In other words, the systematic loss incurred by the functions is higher than the

total error rate. Moreover, Adaboost’s error has a positive relationship with the total

 9

number of iterations {M}. Evidently, this later result indicates that Adaboost rapidly

over-fits the data.

In contrast, in the last two data sets, the bias is lower than the error rate. This only

occurs when the loss incurred by function’s fluctuations around the central tendency in

response to different samples has a direct effect on error. Note also how the error

decrease has the number of iterations increases.

 We simulated 1000 coin-toss classifiers for each data set to analyze the extent to

which the results reported in Table 1 can be explained by randomness. To obtain each

random classifier, we generate random values from a discrete distribution in which two

values where possible: 1’s and 0’s. Each value was assigned 50 per cent probability. The

results for each data set are shown in Table 2.

Table 2 about here

 Table 2 shows the distribution of the error rate of the random classifiers. As can

be seen, randomness can explain up to 46 percent, approximately, of out-of-sample

errors. Thus, classifiers achieving higher out-of-sample error rates can be considered as

random. In fact, only in the first two data sets was Adaboost able to obtain lower out-of-

sample error rates. But what are the factors that affect Adaboost’s ability to discriminate

between stock price movements?

 10

 One possible way to answer this question is to gauge traditional benchmarks. In

doing so, we can evaluate whether or not simple linear models are able to explain

Adaboost’s predictability. To that end, we estimated a simple first-order autoregressive

model for each period, and the results are shown in Table 3.

Table 3 about here

Table 3 displays the same accuracy measures as Table 1. In addition, Table 3

shows the AR(1) model estimated in the training sample of each data set. Not

surprisingly, a simple autoregressive model is able to obtain very similar direction-of-

change predictability as Adaboost. Similar to Table 1, the autoregressive models are able

to obtain in-sample predictability but fail to detect out-of-sample predictability in the last

two data sets. The disappearance of the predictability documented here is consistent with

Allen and Karjalainen [23] ’s results.

4. – Concluding remarks

In this paper, we have implemented a classifier induction approach to analyze the sample

evidence on return predictability. We obtain the following general results. First, periods

characterized by high first-order serial correlation in stock returns allow both in-sample

and out-of-sample direction-of-change predictability. Specifically, a powerful machine

learning algorithm called Adaboost is able to find a stable function which discriminates,

better than randomly made decisions, between upward and downward movements.

 11

 Second, Adaboost does over-fit. Functions induced in periods characterized by the

lack of autocorrelation in stock returns are able to obtain in-sample predictability but fail

to detect out-of-sample predictability. In fact, in many cases, Adaboost’s out-of-sample

performance decreases as more iterations are run. We have also examined different

Adaboost specifications, such as using 4- and 8-node tree-based models instead of

stumps, and achieved faster over-fitting.

 There are several natural extensions to our analysis. First, machine learning

algorithms can be used to examine large price change predictability. They can also be

modified to study predictability of large absolute price movements, which are useful for

option trading strategies. Second, machine learning algorithms are sufficiently flexible to

examine the performance of nested models. For example, one can induce classifiers for

small-cap indices using small-cap’s or large-cap’s lags, and evaluate the lead-lag effect in

terms of movement predictability. Finally, machine learning algorithms can be used to

identify risk exposures. For instance, we can codify costly lower-tail outcomes and search

for “inputs” or “explanatory” variables that help a machine learning algorithm

discriminate between the costly lower-tail outcomes and the remainder of outcomes. We

hope to explore these issues more fully in future research.

 12

Appendix: The Bias-variance decomposition of 0/1 loss function

The 0/1 loss function is usually the main criterion for classification problems, and may be

represented as in the following equation:

ˆ(,),i i iE L t y=

where at time i, is the “output” or “response” variable it ,t C∈ where is a set of class

labels. In this paper, , where equals to 1 if the observed equity premium is

higher than zero, 0 otherwise. is the predicted movement. equals to 1 if the predicted

equity premium is higher than zero, 0 otherwise. equals to 1 if

C

{0,1}C∈ C

ˆiy ˆiy

iE ˆit yi≠ , 0 otherwise. In

other words, the 0/1 loss function represents one less the proportion of correctly predicted

signs.

In the machine learning literature, the bias-variance decomposition is widely used

as key tool for understating function approximation algorithms. Following Domingos

[24] and Valentini and Dietterich [25], bias and variance in a noise-free setting can be

defined in terms of the main prediction. The main prediction can be defined as the

movement that is predicted more often in the test sample. Thus, the bias (systematic loss

incurred by the function) at time i can be computed as,

my

 i

1 if
.

0 if
m i

m i

y t
B

y t
≠⎧

= ⎨ =⎩

 13

 To distinguish between the two different effects of the variance on the loss 0/1

loss function, Domingos [24] defines the unbiased variance, , to be the variance when

and can be calculated as,

uV

0,iB =

 ˆ() and () ,i
u m i m iV y t y y= = ≠

where 1s = if s is true, 0 otherwise. The unbiased variance evaluates the extent to which

the estimated function deviates from the correct predictions. The biased variance, ,

occurs when and evaluates the extent to which the estimated function deviates

from the incorrect predictions. The biased variance can be estimated as,

i
bV

1,iB =

 ˆ() () and () .i
b m i mV y t y y= ≠ ≠x i

i

 To obtain the loss associated with a given observation a time i [denoted by],

we simply compute the algebraic sum of bias, unbiased and biased variance as,

iE

 .i
i i u bE B V V= + −

In order to compute the aforementioned variables in a test set, we simply obtain the

average for each variable. Clearly, if we want a good function that distinguishes between

up-and-down movements, we want the bias and the unbiased variance to be small.

 14

References
[1] E. Fama, The behavior of stock market prices, Journal of Business 30 (1965), 34-

105.

[2] A. W. Lo, A. C MacKinlay, Stocks market prices do not follow random walks:

Evidence from a simple specification test, Review of Financial Studies 1 (1988)

41-66.

[3] J. Conrad, G. Kaul, Time varying expected returns, Journal of Business 61 (1988)

409-425.

[4] N. Jegadeesh, Evidence of predictable behavior of security returns, Journal of

Finance 45 (1990) 881-898.

[5] G. Kaul, Predictable components in stock returns, in: G. S. Maddala, C. R. Rao,

eds, Handbook of Statistics, Vol. 14, (Elsevier Science B.V., Amsterdam, 1996).

[6] C. Apte, S. Hong, Predicting equities returns from securities data with minimal

rule generation, in: U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R.

Uthurusamy, eds., Advances in Knowledge Discovery and Data Mining (AAAI

Press/The MIT Press, Cambrigde, MA, 1995).

[7] R. Tsaih, Y. Hsu, C. C. Lai, Forecasting S&P 500 stock index futures with a

hybrid AI system, Decision Support System 23 (1998) 161-174.

[8] S. Zemke, Nonlinear index prediction, Physica A 269 (1999) 177-183.

[9] A. Chen, M. T. Leung, H. Daouk, Application of neural networks to an emerging

financial market: Forecasting and trading the Taiwan stock index, Computers and

Operations Research 30 (2003), 901-923.

[10] K. Kim, Financial time series forecasting using support vector machines,

Neurocomputing 55 (2003) 307-319.

 15

[11] P. N. Rodriguez, A. Rodriguez, Predicting stock market indices movements, in:

M. Costantino, C. Brebbia, eds., Computational Finance and its Applications

(Wessex Institute of Technology, Southampton, 2004).

[12] N. O’Connor, M. G. Madden, A neural network approach to predicting stock

exchange movements using external factors, Knowledge-Based Systems 19

(2006) 371-378.

[13] P. Bossaerts, P. Hillion, Implementing statistical criteria to select return

forecasting models: What do we learn?, Review of Financial Studies 12 (1999),

405-28.

[14] R. E. Schapire, The strength of weak learnability, Machine Learning 5 (1990)

197-227.

[15] Y. Freund, Boosting a weak learning algorithm by majority, Information and

Computation 121 (1995) 256-285.

[16] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line learning

and an application to boosting, Journal of Computer and System Sciences 55

(1997) 119-139.

[17] T. Hastie, R Tibshirani, J. H. Friedman, The Elements of Statistical Learning:

Data Mining, Inference and Prediction (Springer-Verlag, New York; 2001).

[18] M. Culp, K. Johnson, G. Michailidis, ada: an R package for boosting, Journal of

Statistical Software 17 (2006), issue 2.

[19] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classification and

Regression Trees (Wadsworth, Belmont, CA, 1984).

[20] J. R. Quinlan, Induction of decision trees, Machine Learning 1 (1986) 81-106.

 16

[21] J. R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann: San

Mateo, CA; 1993).

[22] S. R. Safavian, D. Landgrebe. A survey of decision tree classifier methodology,

IEEE Transactions on Systems, Man, and Cybernetics 21 (1991) 660-674.

[23] F. Allen, R Karjalainen, Using genetic algorithms to find technical trading rules,

Journal of Financial Economics 51(1999) 245-271.

[24] P. Domingos, A unified bias-variance decomposition for zero-one and squared

loss, in: Proceedings of the Seventeenth National Conference on Artificial

Intelligence (AAAI Press: Austin, TX, 2000) 564-569.

[25] G. Valentini, T. G. Dietterich, Bias-variance analysis of support vector machines

for the development of SVM-based ensemble methods, Journal of Machine

Learning Research 5(2004) 725-775.

 17

Table 1. Direction-of-change predictability of Adaboost.

A. First sub-sample. Training (19620807-19681112) and Testing (19681113-19721229)
Specification In-sample evidence Out-of-sample evidence

Error Bias Vu Vb Error Bias Vu Vb
M =1 0.4136 0.4405 0.2427 0.2697 0.3895 0.4715 0.2246 0.3066
M = 2 0.4136 0.4405 0.2427 0.2697 0.3895 0.4715 0.2246 0.3066
M = 25 0.3911 0.4405 0.177 0.2260 0.4136 0.4715 0.1793 0.2372
M = 50 0.3898 0.4405 0.175 0.2261 0.4127 0.4715 0.1765 0.2353
M = 200 0.3866 0.4405 0.117 0.1708 0.4147 0.4715 0.1369 0.1938
M = 1000 0.3230 0.4405 0.112 0.2293 0.4272 0.4715 0.1745 0.2189

B. Second sub-sample. Training (19730102-19790808) and Testing (19780809-1983123
Specification In-sample evidence Out-of-sample evidence

Error Bias Vu Vb Error Bias Vu Vb
M =1 0.4353 0.4994 0.0803 0.1445 0.4658 0.4766 0.1061 0.1169
M = 2 0.4353 0.4994 0.0803 0.1445 0.4658 0.4766 0.1061 0.1169
M = 25 0.4107 0.4994 0.21 0.2992 0.4604 0.4766 0.2437 0.2599
M = 50 0.4053 0.4994 0.174 0.2686 0.4667 0.4766 0.2221 0.2320
M = 200 0.3783 0.4994 0.181 0.3022 0.4739 0.4766 0.2338 0.2365
M = 1000 0.3237 0.4994 0.153 0.3291 0.4937 0.4766 0.2572 0.2401

C. Third sub-sample. Training (19840103-19900808) and Testing (19900809-19941230
Specification In-sample evidence Out-of-sample evidence

Error Bias Vu Vb Error Bias Vu Vb
M =1 0.5494 0.4506 0.5494 0.4506 0.5198 0.4802 0.5198 0.4802
M = 2 0.5494 0.4506 0.5494 0.4506 0.5198 0.4802 0.5198 0.4802
M = 25 0.4446 0.4506 0.029 0.0348 0.4847 0.4802 0.0207 0.0162
M = 50 0.4230 0.4506 0.081 0.1084 0.4838 0.4802 0.0791 0.0755
M = 200 0.3913 0.4506 0.116 0.1756 0.4784 0.4802 0.1214 0.1232
M = 1000 0.3355 0.4506 0.104 0.2187 0.4703 0.4802 0.1466 0.1565

D. Fourth sub-sample. Training (19950103-20001226) and Testing (20011227-2004123
Specification In-sample evidence Out-of-sample evidence

Error Bias Vu Vb Error Bias Vu Vb
M =1 0.5410 0.4590 0.5410 0.4590 0.5084 0.4916 0.5084 0.4916
M = 2 0.5410 0.4590 0.5410 0.4590 0.5084 0.4916 0.5084 0.4916
M = 25 0.4187 0.4590 0.13 0.1700 0.4945 0.4916 0.1440 0.1410
M = 50 0.3981 0.4590 0.083 0.1442 0.5055 0.4916 0.1470 0.1331
M = 200 0.3724 0.4590 0.101 0.1872 0.4985 0.4916 0.1698 0.1629
M = 1000 0.3247 0.4590 0.1210 0.2553 0.4826 0.4916 0.1917 0.2006

 18

Table 2. Random predictability

A. First sub-sample. Training (19620807-19681112) and Testing (19681113-19721229)

Percentil 0.01 0.05 0.25 0.50 0.75 0.95 0.99
In-sample error 0.4701 0.4804 0.4907 0.4997 0.5080 0.5202 0.5292

Out-of-sample error 0.4648 0.4754 0.4899 0.4995 0.5092 0.5236 0.5362

B. Second sub-sample. Training (19730102-19790808) and Testing (19780809-19831230

Percentil 0.01 0.05 0.25 0.50 0.75 0.95 0.99
In-sample error 0.4724 0.4802 0.4922 0.5000 0.5078 0.5204 0.5288

Out-of-sample error 0.4685 0.4757 0.4901 0.5009 0.5108 0.5234 0.5324

C. Third sub-sample. Training (19840103-19900808) and Testing (19900809-19941230)

Percentil 0.01 0.05 0.25 0.50 0.75 0.95 0.99
In-sample error 0.4727 0.4805 0.4924 0.4997 0.5075 0.5195 0.5261

Out-of-sample error 0.4649 0.4748 0.4901 0.5009 0.5108 0.5252 0.5342

D. Fourth sub-sample. Training (19950103-20001226) and Testing (20011227-20041231)

Percentil 0.01 0.05 0.25 0.50 0.75 0.95 0.99
In-sample error 0.4702 0.4795 0.4914 0.4993 0.5099 0.5212 0.5284

Out-of-sample error 0.4667 0.4747 0.4886 0.4995 0.5104 0.5263 0.5353

 19

Table 3. Direction-of-change predictability of an AR(1) model.

A. First sub-sample. Training (19620807-19681112) and Testing (19681113-19721229)
Model: R t = 0.0005313117 + 0.1417891R t-1

In-sample evidence Out-of-sample evidence
Error Bias Vu Vb Error Bias Vu Vb

0.4248 0.4402 0.0790 0.094 0.4011 0.4715 0.0848 0.1552

B. Second sub-sample. Training (19730102-19790808) and Testing (19780809-19831230)
Model: R t = 0.0001423972 + 0.2224826R t-1

In-sample evidence Out-of-sample evidence
Error Bias Vu Vb Error Bias Vu Vb

0.4259 0.4997 0.1968 0.271 0.4676 0.4766 0.2185 0.2275

C. Third sub-sample. Training (19840103-19900808) and Testing (19900809-19941230)
Model: R t = 0.0006423667 + 0.05325351R t-1

In-sample evidence Out-of-sample evidence
Error Bias Vu Vb Error Bias Vu Vb

0.4514 0.4502 0.0330 0.032 0.4838 0.4802 0.0234 0.0198

D. Fourth sub-sample. Training (19950103-20001226) and Testing (20011227-20041231)
Model: R t = 0.003193694 + 0.0008291922R t-1

In-sample evidence Out-of-sample evidence
Error Bias Vu Vb Error Bias Vu Vb

0.4586 0.4586 0.0000 0.0000 0.4916 0.4916 0.0000 0.0000

 20

